Esempio n. 1
0
  def __init__(self,basePath,mouse,s,dataSet='OnACID',SNR_thr=2,rval_thr=0):
    pxtomu = 530.68/512

    pathMouse = pathcat([basePath,mouse])
    pathSession = pathcat([pathMouse,'Session%02d'%s])
    pathData = pathcat([pathSession,'results_OnACID.mat'])
    ld = loadmat(pathData,variable_names=['Cn'])

    pathData = pathcat([pathSession,'results_%s.mat'%dataSet])
    self.data = loadmat(pathData,variable_names=['A','C','SNR','r_values'])
    self.data['Cn'] = ld['Cn'].T

    self.idx_good = (self.data['SNR']>2).T & (self.data['r_values']>0).T
    self.cm = com(self.data['A'],512,512) * pxtomu
    self.cm[np.squeeze(~self.idx_good),:] = np.NaN
    self.D_ROIs = sp.spatial.distance.pdist(self.cm)
    self.D_ROIs_mat = sp.spatial.distance.squareform(self.D_ROIs)


    nCells = self.data['C'].shape[0]
    self.corrcoef = np.zeros((nCells,nCells))
    for n in tqdm(np.where(self.idx_good)[0]):
      for nn in range(n+1,nCells):
          if self.idx_good[nn]:
              self.corrcoef[n,nn] = np.corrcoef(self.data['C'][n,:],self.data['C'][nn,:])[0,1]

    self.Acorr = np.zeros((nCells,nCells))
    for n in tqdm(np.where(self.idx_good)[0]):#range(nCells)):
      idx_close=np.where(self.D_ROIs_mat[n,:]<20)[0]
      for nn in idx_close:
        self.Acorr[n,nn],_ = calculate_img_correlation(self.data['A'][:,n],self.data['A'][:,nn],shift=False)

    self.Asz = (self.data['A']>0).sum(0)
Esempio n. 2
0
def plot_session_shifts(basePath,
                        mouse,
                        sessions=None,
                        dataSet='OnACID',
                        pltSave=False):

    pathMouse = pathcat([basePath, mouse])
    pathSession1 = pathcat(
        [pathMouse,
         'Session%02d/results_%s.mat' % (sessions[0], dataSet)])
    ROIs1_ld = loadmat(pathSession1, variable_names=['A', 'Cn'])

    pathSession2 = pathcat(
        [pathMouse,
         'Session%02d/results_%s.mat' % (sessions[1], dataSet)])
    ROIs2_ld = loadmat(pathSession2, variable_names=['A', 'Cn'])

    A1 = ROIs1_ld['A']
    A2 = ROIs2_ld['A']
    #dims = Cn.shape

    get_shift_and_flow(A1, A2, plot_bool=True)
    #Cn2 = cv2.remap(ROIs2_ld['Cn'].astype(np.float32), x_remap, y_remap, cv2.INTER_NEAREST)

    plt.figure()
    plt.subplot(1, 2, 1)
    plt.imshow(ROIs1_ld['Cn'], origin='lower')
    plt.subplot(1, 2, 2)
    plt.imshow(ROIs2_ld['Cn'], origin='lower')
    plt.show(block=False)

    if pltSave:
        plt.savefig('%ssession_shift.png' % pathPlots)
Esempio n. 3
0
    def __init__(self, basePath=None, mouse=None, s=None):

        self.f = 15  ## recording rate in Hz

        if not (basePath is None):
            pathMouse = pathcat([basePath, mouse])
            self.pathSession = pathcat([pathMouse, 'Session%02d' % s])

        self.data = {}
Esempio n. 4
0
def run_detection(basePath,
                  mouse,
                  nP,
                  s_start=1,
                  s_end=None,
                  nSession=None,
                  session_order=None,
                  rerun=False):

    pathMouse = pathcat([basePath, mouse])
    if nSession is None:
        nSession, tmp = get_nPaths(pathMouse, 'Session')

    cMouse = cluster(basePath,
                     mouse,
                     nSession,
                     dataSet='redetect',
                     session_order=session_order,
                     suffix='')
    cMouse.process_sessions(n_processes=nP, reprocess=True)
    cMouse.get_IDs()
    cMouse.get_stats(n_processes=nP)

    # cMouse.load([True,True,True,False,False])
    cMouse.update_status(complete=False,
                         SNR_thr=3,
                         rval_thr=0.5,
                         reliability_thr=0.1,
                         Bayes_thr=10,
                         nCluster_thr=2)
    # return cMouse
    s_end = nSession + 1 if s_end is None else s_end + 1
    print(s_start, s_end)
    print('run detection on %d sessions for mouse %s' % (nSession, mouse))
    for s in range(s_start, s_end):

        # try:
        IDs = cMouse.IDs['neuronID'][cMouse.status[:, s - 1, 1], s - 1,
                                     1].astype('int')
        s_range = np.unique(cMouse.IDs['neuronID'][:, s - 1, 2])
        s0 = int(np.unique(cMouse.IDs['neuronID'][:, s - 1, 2])[0])
        print('Now processing session %d' % s0)
        dPC = detect_PC(basePath,
                        mouse,
                        s0,
                        nP,
                        nbin=100,
                        plt_bool=False,
                        sv_bool=False,
                        suffix='')
        dPC.run_detection(f_max=1,
                          rerun=rerun,
                          dataSet='redetect',
                          assignment=IDs)
Esempio n. 5
0
    def find_overlaps(self, s, reprocess=None):

        if not (reprocess is None):
            self.reprocess = reprocess

        if self.reprocess:
            pathLoad = pathcat([
                self.cluster.meta['pathMouse'],
                'Session%02d/results_redetect.mat' % (s + 1)
            ])
            data = loadmat(pathLoad, variable_names=['A', 'C'])
            self.D_ROIs = sp.spatial.distance.squareform(
                sp.spatial.distance.pdist(self.cluster.stats['com'][:, s, :]))

            idx_close = self.D_ROIs < 10

            self.corrcoef = np.zeros((self.nC, self.nC)) * np.NaN
            self.Acorr = np.zeros((self.nC, self.nC)) * np.NaN

            for c in tqdm(np.where(self.cluster.status[:, s, 1])[0]):
                n = int(self.cluster.IDs['neuronID'][c, s, 1])
                for cc in np.where(idx_close[c, :])[0]:
                    nn = int(self.cluster.IDs['neuronID'][cc, s, 1])
                    self.corrcoef[c, cc] = np.corrcoef(data['C'][n, :],
                                                       data['C'][nn, :])[0, 1]
                    self.Acorr[c, cc], _ = calculate_img_correlation(
                        data['A'][:, n], data['A'][:, nn], shift=False)
            self.reprocess = False

        np.fill_diagonal(self.corrcoef, np.NaN)
        np.fill_diagonal(self.Acorr, np.NaN)

        idx_overlap = np.where((self.Acorr > 0.2) & (self.corrcoef > 0.5))
        for (i, j) in zip(idx_overlap[0], idx_overlap[1]):
            print(
                'neurons: %d,%d, \t Acorr: %.3f, Ccorr: %.3f, \t SNR: %.2f,%.2f'
                % (i, j, self.Acorr[i, j], self.corrcoef[i, j],
                   self.cluster.stats['SNR'][i, s],
                   self.cluster.stats['SNR'][j, s]))
        print(len(idx_overlap[0]))
Esempio n. 6
0
    def load_data(self, C=None, S=None, SNR=None, r_values=None):
        ## do I need noise level for either method? (rerun redetection??)
        if C is None:
            pathResults = pathcat([self.pathSession, 'results_redetect.mat'])
            ld = loadmat(pathResults,
                         variable_names=[
                             'C', 'S', 'A', 'b', 'f', 'SNR', 'r_values', 'CNN'
                         ],
                         squeeze_me=True)
            for key in ld.keys():
                self.data[key] = ld[key]
            self.data['C'] -= self.data['C'].min(1)[:, np.newaxis]
            self.data['S'][self.data['S'] < 0] = 0
        else:
            self.data['C'] = C
            self.data['S'] = S
            self.data['C'] -= self.data['C'].min(1)[:, np.newaxis]
            self.data['S'][self.data['S'] < 0] = 0
            self.data['SNR'] = SNR
            self.data['r_values'] = r_values

        #self.data['A'] = normalize_sparse_array(self.data['A'])
        self.nCells, self.T = self.data['C'].shape
Esempio n. 7
0
def analyze_matchStats(pathMouse,std,thr,w,OnACID=True,old=False):
  
  match = {}
  if OnACID:
    suffix = '_OnACID'
  else:
    suffix = ''
  
  if not old: 
    pathAss = pathcat([pathMouse,sprintf('matching/results_matching_multi_std=%d_thr=%d_w=%d%s.mat'%(std,thr*100,round(w*100),suffix]))
    ld = loadmat(pathAss)
    scores = ld['scores']
    assignments = ld['assignments']
    
    for s in range(1,15):
      N_union = max(np.where(~np.isnan(assignments[:,s-1]))[0]);
      N_s = sum(~isnan(assignments(:,s)));
      match[s] = {}
      match[s]['bool'] = np.zeros((N_union,N_s)).astype('bool')
      match[s]['d_s'] = np.zeros((N_union,N_s))*np.NaN
  
  ld_manual = loadmat(pathcat([pathMouse,'backup/save_final/matching_results.mat']))
  matchStats_arr{1} = get_matchState(data,clusters_sv);
  
  if old:
    ld_old = loadmat(pathcat([pathMouse,'matching_results.mat']))
    [matchStats_arr{2}, data2, idx_ref_match, idx_match_ref] = OnACID_get_matchState(pathMouse,std,thr,w,OnACID,old);
  else:
    [matchStats_arr{2}, data2, idx_ref_match, idx_match_ref] = OnACID_get_matchState(pathMouse,std,thr,w,OnACID,old);
    
  col = ['b','r']
  
  nSes = len(matchStats_arr{1}.clusters(1).list)
  
  plt.figure('position',[100 100 800 400])
  
  nROI_base = zeros(nSes,1);
  for s = 1:nSes
    nROI_base[s] = len(idx_ref_match{s});#data.session(s).nROI;
#      disp(sprintf('nROIs: %d , %d',sum(~isnan(idx_ref_match{s})),sum(~isnan(idx_match_ref{s}))))
    data.session(s).nROI = sum(~isnan(idx_match_ref{s}));
  end
  ROI_recurr_frac = zeros(nSes-1,2);
  
  ## clean up from non-matched neurons
  for s=1:nSes
    for n = 1:length(idx_ref_match{s})
      if isnan(idx_ref_match{s}(n)) && n <= length(matchStats_arr{1}.session(s).neuron)
        c = matchStats_arr{1}.session(s).neuron(n).cluster_ID;
        if ~isempty(c)
          matchStats_arr{1}.session(s).neuron(n).cluster_ID = [];
          matchStats_arr{1}.clusters(c).list(s) = 0;
        end
      end
    end
    
    for n = max(idx_match_ref{s})+1:length(matchStats_arr{1}.session(s).neuron)
      c = matchStats_arr{1}.session(s).neuron(n).cluster_ID;
      matchStats_arr{1}.session(s).neuron(n).cluster_ID = [];
      if ~isempty(c)
        matchStats_arr{1}.clusters(c).list(s) = 0;
      end
    end
    
#      for n = 1:length(idx_match_ref{s})
#        n
#        if isnan(idx_match_ref{s}(n))# && n <= length(matchStats_arr{2}.session(s).neuron)
#          c = matchStats_arr{2}.session(s).neuron(n).cluster_ID;
#          if ~isempty(c)
#            matchStats_arr{2}.session(s).neuron(n).cluster_ID = [];
#            matchStats_arr{2}.clusters(c).list(s) = 0;
#          end
#        end
#      end
#      
#      for n = max(idx_ref_match{s})+1:length(matchStats_arr{2}.session(s).neuron)
#        c = matchStats_arr{2}.session(s).neuron(n).cluster_ID;
#        matchStats_arr{2}.session(s).neuron(n).cluster_ID = [];
#        if ~isempty(c)
#          matchStats_arr{2}.clusters(c).list(s) = 0;
#        end
#      end
  end
  
  for i = 1:length(matchStats_arr)
    nC = length(matchStats_arr{i}.clusters);
    
    cluster_nROI = zeros(nSes,1);
    
    nROI = zeros(nSes,1);
    ROI_recurr = zeros(nSes,nSes-1);
    
    for c = 1:nC
      
      matchStats_arr{i}.clusters(c).nROI = nnz(matchStats_arr{i}.clusters(c).list);
      
      if matchStats_arr{i}.clusters(c).nROI
        cluster_nROI(matchStats_arr{i}.clusters(c).nROI) = cluster_nROI(matchStats_arr{i}.clusters(c).nROI) + 1;
      end
      
      nROI = nROI + (matchStats_arr{i}.clusters(c).list>0);
    end
    
    nROI_total = zeros(nSes-1,1);
    for s = 1:nSes
      for sm = s+1:nSes
        ds = sm-s;
#          nROI_total(ds) = nROI_total(ds) + nROI(s);
        nROI_total(ds) = nROI_total(ds) + nROI_base(s);
      end
    end
    
    
#      subplot(4,2,1)
#      hold on
    
#      bar(nROI,'FaceAlpha',0.6,'FaceColor',col{i})
#      xlabel('Session #')
#      ylabel('# ROIs')
    
#      subplot(2,2,2)
#      hold on
#      bar(nROI_total,'FaceAlpha',0.6)
    
    subplot(2,2,1)
    if i == 1
      dispName = 'pre';
    else
      dispName = 'post';
    end
    hold on
    bar(cluster_nROI,'FaceAlpha',0.6,'FaceColor',col{i},'DisplayName',dispName)
    xlabel('# ROIs / cluster')
    ylabel('# clusters')
    ylim([0,400])
    legend('location','NorthEast')
    pause(0.0001)
    
    
    for s = 1:nSes
      
      for sm = s+1:nSes
        
        ds = sm-s;
        
        for c = 1:nC
          
          if matchStats_arr{i}.clusters(c).list(s) && matchStats_arr{i}.clusters(c).list(sm)
            ROI_recurr(s,ds) = ROI_recurr(s,ds) + 1;
          end
          
        end
        
      end
      
    end
    
    ROI_recurr_frac(:,i) = sum(ROI_recurr,1)./nROI_total.T;
    
    subplot(2,2,2)
    hold on
    plot([0,15],[0.5,0.5],'k:','LineWidth',0.5,'HandleVisibility','off')
    plot(ROI_recurr_frac(:,i),'o--','DisplayName','p_{recurr}')
    xticks([])
#      ylim([0,1])
    ylabel('p_{rec}')  
    
  end
  
  subplot(2,2,2)
  hold on
  plot([0,15],[0,0],'k:','LineWidth',0.5,'HandleVisibility','off')
  plot(ROI_recurr_frac(:,2)-ROI_recurr_frac(:,1),'ko--','DisplayName','\Delta p')
  ylim([-0.1,1])
  xlabel('\Delta s')
  ylabel('\Delta p_{rec}')
  disp_txt = false;
  matches = zeros(nSes-1,4);
  xlim([0.5,15.5])
  legend('Location','NorthEast')
  
#    figure
  subplot(2,2,4)
  hold on
  p_matches_correct = plot(matches(:,1)./sum(matches,2),'g','DisplayName','correct match');
  p_matches_wrong = plot(matches(:,2)./sum(matches,2),'r','DisplayName','wrong match');
  p_matches_missing = plot(matches(:,3)./sum(matches,2),'r--','DisplayName','missing');
  p_matches_unnec = plot(matches(:,4)./sum(matches,2),'r:','DisplayName','unnec. match');
  
  legend('Location','northeastoutside')
  xlabel('\Delta s')
  yticks(linspace(0,1,6))
  yticklabels(linspace(0,1,6))
  ylabel('fraction')
  c_matches = zeros(length(matchStats_arr{1}.clusters),4); ## col-# = cluster-ID, cols: 1: new cluster-ID; 2: old #ROIs, 3: new #ROIs, 4: # correct ROIs
  xlim([0.5,15.5])
  ylim([0,1])
  pause(0.0001)
  
  
  nROI_match = zeros(nSes+1,4);
  
  ## now, compare both matchStats
  for s = 1:nSes
    disp(sprintf('Now processing s=%d',s))
    for n = 1:length(idx_ref_match{s})
      
      if isnan(idx_ref_match{s}(n)) || n > length(matchStats_arr{2}.session(s).neuron)
#          disp('why?')
        continue
      end
      
      
      c2 = matchStats_arr{2}.session(s).neuron(n).cluster_ID;
      c_ref = matchStats_arr{1}.session(s).neuron(n).cluster_ID;
      
      
#        matchStats_arr{1}.clusters(c_ref).list
#        matchStats_arr{2}.clusters(c2).list
      
      
      if ~isempty(c_ref)
        if isempty(c2)
          if ~c_matches(c_ref,4)
            c_matches(c_ref,1) = NaN;
            c_matches(c_ref,2) = nnz(matchStats_arr{1}.clusters(c_ref).list);
            c_matches(c_ref,3) = 0;
            c_matches(c_ref,4) = 0;
          end
        else
          init_correct = sum(matchStats_arr{1}.clusters(c_ref).list & matchStats_arr{1}.clusters(c_ref).list==matchStats_arr{2}.clusters(c2).list);
          if init_correct > c_matches(c_ref,4);
            c_matches(c_ref,1) = c2;
            c_matches(c_ref,2) = nnz(matchStats_arr{1}.clusters(c_ref).list);
            c_matches(c_ref,3) = nnz(matchStats_arr{2}.clusters(c2).list);
            c_matches(c_ref,4) = init_correct;
          end
        end
      end
      
#        if ~isempty(c_ref)# && nnz(matchStats_arr{1}.clusters(c_ref).list) < 2
#          continue
#        end
      
#        if ~isempty(c2)# && nnz(matchStats_arr{2}.clusters(c2).list) < 2
#          continue
#        end
      
#        init_correct
#        waitforbuttonpress
      
#        if ~isempty(c2) && matchStats_arr{i}.clusters(c2).nROI == 15
          
      for sm = s+1:nSes
        
        ds = sm-s;
        
        if disp_txt
          [s sm ds]
          n
          [c_ref,c2]
          matchStats_arr{1}.clusters(c_ref).list
          matchStats_arr{2}.clusters(c2).list
          
#            [matchStats_arr{1}.clusters(c_ref).list(s) matchStats_arr{2}.clusters(c2).list(s)]
#            [matchStats_arr{1}.clusters(c_ref).list(sm) matchStats_arr{2}.clusters(c2).list(sm)]
        end
        
#          m_true = [];
#          if ~isempty(matchStats_arr{2}.clusters(c2).list(sm))
#            m_true = matchStats_arr{2}.clusters(c2).list(sm);
#          end
        
        if isempty([c_ref,c2])
          if disp_txt
            disp('none assigned')
          end
        elseif isempty(c_ref)
          m2 = matchStats_arr{2}.clusters(c2).list(sm);
          
          if m2
            matches(ds,4) = matches(ds,4) + 1;
            if ~old
              match(sm).bool(c2,idx_ref_match{sm}(m2)) = 4;
              match(sm).d_s(c2,idx_ref_match{sm}(m2)) = sm-s;
              
              nROI = 16;
              nROI_match(nROI,4) = nROI_match(nROI,4) + 1;
            end
          end
          if disp_txt
            disp('ref n not assigned')
          end
        elseif isempty(c2)
          m = matchStats_arr{1}.clusters(c_ref).list(sm);
          if m && ~isnan(idx_ref_match{sm}(m))
            matches(ds,3) = matches(ds,3) + 1;
            if ~old
              match(sm).bool(c2,idx_ref_match{sm}(m)) = 3;
              
              nROI = matchStats_arr{1}.clusters(c_ref).nROI;
              nROI_match(nROI,3) = nROI_match(nROI,3) + 1;
            end
          end
          
          if disp_txt
            disp('processed n not assigned')
          end
        else
          
          m2 = matchStats_arr{2}.clusters(c2).list(sm);
          m = matchStats_arr{1}.clusters(c_ref).list(sm);
#            if m<=length(idx_ref_match{sm}) && (~m || ~isnan(idx_ref_match{sm}(m))) && m2<=length(idx_ref_match{sm}) && (~m2 || ~isnan(idx_ref_match{sm}(m2)))
          if ~m && ~m2
            if disp_txt
              disp('nothing, both are empty!')
            end
          elseif ~m
            matches(ds,4) = matches(ds,4) + 1;
            if ~old
              match(sm).bool(c2,idx_ref_match{sm}(m2)) = 4;
              match(sm).d_s(c2,idx_ref_match{sm}(m2)) = sm-s;
              
              nROI = matchStats_arr{1}.clusters(c_ref).nROI;
              nROI_match(nROI,4) = nROI_match(nROI,4) + 1;
            end
            if disp_txt
              disp('ref sm not assigned')
            end
          elseif ~m2
            matches(ds,3) = matches(ds,3) + 1;
            if ~old
              match(sm).bool(c2,idx_ref_match{sm}(m)) = 3;
              
              nROI = matchStats_arr{1}.clusters(c_ref).nROI;
              nROI_match(nROI,3) = nROI_match(nROI,3) + 1;
            end
            
            if disp_txt
              disp('processed sm not assigned')
            end
          elseif m2 ~= m
            matches(ds,2) = matches(ds,2) + 1;
            if ~old
              match(sm).bool(c2,idx_ref_match{sm}(m2)) = 2;
              match(sm).bool(c2,idx_ref_match{sm}(m)) = 3;
              match(sm).d_s(c2,idx_ref_match{sm}(m2)) = sm-s;
              
              nROI = matchStats_arr{1}.clusters(c_ref).nROI;
              nROI_match(nROI,2) = nROI_match(nROI,2) + 1;
              
            end
            if disp_txt
              disp('wrongly assigned')
            end
          else
            matches(ds,1) = matches(ds,1) + 1;
            if ~old
              match(sm).bool(c2,idx_ref_match{sm}(m2)) = 1;
              match(sm).d_s(c2,idx_ref_match{sm}(m2)) = sm-s;
              
              nROI = matchStats_arr{1}.clusters(c_ref).nROI;
              nROI_match(nROI,1) = nROI_match(nROI,1) + 1;
            end
            if disp_txt
              disp('properly assigned')
            end
          end
#            end
        end
#          if disp_txt
#            waitforbuttonpress
#          end
      end
      
      if ~mod(n,200)
        norm_matches = sum(matches(:,1:3),2);
        set(p_matches_correct,'YData',matches(:,1)./norm_matches)
        set(p_matches_wrong,'YData',matches(:,2)./norm_matches)
        set(p_matches_missing,'YData',matches(:,3)./norm_matches)
        set(p_matches_unnec,'YData',matches(:,4)./norm_matches)
        drawnow
#        pause(0.0001)
#          waitforbuttonpress
      end
    end
  end
  
  subplot(2,2,3)
  scatter(c_matches(:,3)+0.5*rand(size(c_matches,1),1)-0.25,c_matches(:,2)+0.5*rand(size(c_matches,1),1)-0.25,5,c_matches(:,4)./c_matches(:,3));
  colormap('jet');
  
  xlim([1.5,15.5])
  ylim([1.5,15.5])
  xlabel('#ROIs pre')
  ylabel('#ROIs post')
  cbar = colorbar;
  
  ylabel(cbar, 'ratio correct matches')
  
  
  pathSv = pathcat(pathMouse,'Figures',sprintf('results_matching_multi_std=%d_thr=%d_w=%d%s.png',std,thr*100,round(w*100),suffix))
#    path = pathcat(pathFigures,'results_manual_matching.png');
  print(pathSv,'-dpng','-r300')
  
  figure
  c_idx = c_matches(:,2)>1;
#    d_matches = c_matches(c_idx,2)-c_matches(c_idx,4);
  d_matches = c_matches(c_idx,2)-c_matches(c_idx,3);
  histogram2(c_matches(c_idx,2),d_matches,linspace(-0.5,15.5,16),linspace(-15.5,15.5,31))
    
    
    
  if ~old
    disp('now, find avg and STD of corr. and distance of wrongly assigned matches / missing matches, as well as same distr from proper matches (able to characterize those based on those values?). also, find the shifted fp_corr of those groups (better match with this?). can i find a better value, which describes the matching yet better?')
    
    disp('get something, saying how many clusters are actually estimated right, vs wrong, + how many errors are made in the clusters (per nROI?)')
    
    
    ### gather scores for each entry in cluster, compute average or something and plot vs # of correct matches
    
    
    
    
#      
    col = {'g','r','b','m'}
#      col = {[0,1,0],[1,0,0],[0,0,1],[1,0,1]}
    dispName = {'correct','wrong','missing','unnecessary'}
    figure
    
    matches_ecdf = cell(4,1);
    
    nROI_match
    subplot(1,3,2)
    h = bar(nROI_match,'stacked');
    for i=1:4
      set(h(i),'FaceColor',col{i})
    end
#      set(h,{'FaceColor'},col)
    hold on
    
    subplot(1,3,3)
    h = bar(transpose(nROI_match),'stacked');
#      for i=1:4
#        set(h(i),'FaceColor',col{i})
#      end
    hold on
    
    for i = 1:4
      
      
      for s = 2:nSes
  #        for sm = s+1:nSes
  #        disp(sprintf('session %d',s))
        mask = logical(match(s).bool==i); #(1:size(scores{s,1},1),1:size(scores{s,1},2))
        
        matches_ecdf{i} = horzcat(matches_ecdf{i},transpose(scores{s-1,1}(mask)));
        
#          subplot(2,2,1)
#          hold on
#          scatter(scores{s-1,1}(mask),scores{s-1,3}(mask),'Color',col{i})
  #        end
      end
      subplot(1,3,1)
      [f,x,flo,fup] = ecdf(matches_ecdf{i});
      stairs(x,f,'Color',col{i},'DisplayName',dispName{i});
      hold on
      stairs(x,flo,':','Color',col{i},'HandleVisibility','off');
      stairs(x,fup,':','Color',col{i},'HandleVisibility','off');
      
#        subplot(1,2,2)
#        hold on
#        hist(matches_ecdf{i})#,'FaceAlpha',0.5,'FaceColor',col{i})
    end
    
    legend('Location','NorthWest')
    xlim([0,1])
    
    
    pathSv = pathcat(pathMouse,'Figures',sprintf('results_matching2_multi_std=%d_thr=%d_w=%d%s.png',std,thr*100,round(w*100),suffix))
  #    path = pathcat(pathFigures,'results_manual_matching.png');
    print(pathSv,'-dpng','-r300')
  end
  
#    for i = -1:1
#      for s = 1:nSes
#        for sm = s+1:nSes
#          mask = match(s,sm).bool(1:size(xdata(1,2).corr,1),1:size(xdata(1,2).corr,2))==i;
#          scatter(xdata(s,sm).dist(mask),xdata(s,sm).corr(mask),col{i})
#        end
#      end
#    end
  
  
  return c_matches,match
  
Esempio n. 8
0
def get_session_perspective(basePath, mouse, s_in):

    pathMouse = pathcat([basePath, mouse])

    dims = (512, 512)
    Cn = np.zeros((2, 512, 512))
    for i, s in enumerate(s_in):
        pathSession = pathcat([pathMouse, 'Session%02d' % s])
        pathResults = pathcat([pathSession, 'results_redetect.mat'])
        ld = loadmat(pathResults, variable_names=['A'])
        A = ld['A']
        #A=normalize_sparse_array(A)
        Cn[i, ...] = A.sum(1).reshape(512, 512).astype('float32')

    shift, flow, (x_grid, y_grid) = get_shift_and_flow(Cn[0, ...],
                                                       Cn[1, ...],
                                                       dims,
                                                       projection=None,
                                                       plot_bool=False)
    #out = cv2.getPerspectiveTransform(Cn[0,...],Cn[1,...])
    #grid_ref = np.stack([x_grid,y_grid,np.zeros(dims)],2).reshape(-1,3)
    #grid2 = np.stack([x_grid+flow[...,0],y_grid+flow[...,1],np.zeros(dims)],2).reshape(-1,3)
    #print(shift)
    #grid_ref = np.stack([x_grid,y_grid],2).reshape(-1,2)
    #grid2 = np.stack([x_grid-shift[0]+flow[...,0],y_grid-shift[1]+flow[...,1]],2).reshape(-1,2)
    #return grid_ref
    #print(grid_ref.shape)
    #out = cv2.estimateAffine2D(grid_ref,grid2)
    #out = cv2.estimateAffine3D(grid_ref,grid2)

    #out = cv2.calibrateCamera(grid_ref,grid2,dims,None,None)
    print(Cn[0, ...].max())
    print(Cn[1, ...].max())
    plt.figure(figsize=(10, 6))
    plt.subplot(231)
    plt.imshow(Cn[0], origin='lower')
    plt.title('Session 1')
    plt.subplot(234)
    plt.imshow(Cn[1], origin='lower')
    plt.title('Session 2')
    ax = plt.subplot(232)
    C = signal.convolve(
        Cn[0, ...] - Cn[0, ...].mean(),
        Cn[1, ::-1, ::-1] - Cn[1, ...].mean(),
        mode='same') / (np.prod(dims) * Cn[0, ...].std() * Cn[1, ...].std())
    ax.imshow(C, origin='lower')
    ax.set_xticks(range(240, 270, 5))
    ax.set_xticklabels(range(-15, 15, 5))
    ax.set_yticks(range(240, 270, 5))
    ax.set_yticklabels(range(-15, 15, 5))

    #plt.set('yticks',range(240,270,7),'yticklabels',range(-15,15,7))
    ax.set_xlim([240, 271])
    ax.set_ylim([240, 271])
    #plt.colorbar()
    plt.title('image correlation (= %5.3g)' % C.max())

    plt.subplot(235)
    idxes = 15
    plt.quiver(x_grid[::idxes, ::idxes],
               y_grid[::idxes, ::idxes],
               flow[::idxes, ::idxes, 0],
               flow[::idxes, ::idxes, 1],
               angles='xy',
               scale_units='xy',
               scale=0.5,
               headwidth=4,
               headlength=4,
               width=0.002,
               units='width')
    plt.xlim([0, 512])
    plt.ylim([0, 512])

    plt.title('optical flow')

    plt.subplot(233)

    Cn_plot = np.zeros(dims + (3, ))
    Cn_plot[..., 0] = Cn[0]
    Cn_plot[..., 1] = Cn[1]
    Cn_plot /= Cn_plot.max()
    plt.imshow(Cn_plot, origin='lower')
    plt.title('1+2 (unaligned)')

    plt.subplot(236)
    x_remap = (x_grid - shift[0] + flow[:, :, 0])
    y_remap = (y_grid - shift[1] + flow[:, :, 1])
    Cn_new = cv2.remap(Cn[1], x_remap, y_remap, cv2.INTER_CUBIC)

    Cn_plot = np.zeros(dims + (3, ))
    Cn_plot[..., 0] = Cn[0]
    Cn_plot[..., 1] = Cn_new
    Cn_plot /= Cn_plot.max()
    plt.imshow(Cn_plot, origin='lower')
    plt.title('1+2 (aligned)')
    plt.tight_layout()
    plt.show(block=False)
    svPath = pathcat([pathMouse, 'alignExample.png'])
    plt.savefig(svPath, format='png', dpi=300)

    #plt.figure()
    #plt.imshow(Cn[0])
    #plt.show(block=False)

    #plt.figure()
    #plt.imshow(Cn_new)
    #plt.show(block=False)

    #grid_new = np.zeros(grid2.shape)

    #im_out = cv2.warpAffine(Cn[1],out[0],(Cn.shape[1:]))
    #print(Cn.shape[1:])
    #plt.figure()
    #plt.subplot(121)
    #plt.imshow(im_out)
    #plt.subplot(122)
    #plt.imshow(im_out)
    #plt.show(block=False)

    #shift, flow, (x_grid,y_grid) = get_shift_and_flow(im_out,Cn[1],dims,projection=None,plot_bool=False)

    return out  #,im_out
Esempio n. 9
0
def set_para(basePath,mouse,s,nP=0,nbin=100,plt_bool=False,sv_bool=False,suffix='2'):

  ## set paths:
  pathMouse = pathcat([basePath,mouse])
  pathSession = pathcat([pathMouse,'Session%02d'%s])

  coarse_factor = int(nbin/20)
  #nbin = 100
  #coarse_factor = 5
  qtl_steps = 4


  fact = 1 ## factor from path length to bin number


  gate_mice = ["34","35","65","66","72","839","840","841","842","879","882","884","886","67","68","91","549","551","756","757","758","918shKO","931wt","943shKO"]
  nogate_mice = ["231","232","236","243","245","246","762","",""]

  zone_idx = {}
  if any(mouse==m for m in gate_mice):        ## gate
    zone_idx['gate'] = [18,33]
    zone_idx['reward'] = [75,95]
    have_gt = True;
  elif any(mouse==m for m in nogate_mice):    ## no gate
    zone_idx['reward'] = [50,70]#[50,66]#
    zone_idx['gate'] = [np.NaN,np.NaN]
    have_gt = False;

  zone_mask = {}
  zone_mask['reward'] = np.zeros(nbin).astype('bool')#range(zone_idx['reward'][0],zone_idx['reward'][-1])
  zone_mask['gate'] = np.zeros(nbin).astype('bool')
  zone_mask['others'] = np.ones(nbin).astype('bool')

  zone_mask['reward'][zone_idx['reward'][0]:zone_idx['reward'][-1]] = True
  zone_mask['others'][zone_mask['reward']] = False
  if have_gt:
    zone_mask['gate'][zone_idx['gate'][0]:zone_idx['gate'][-1]] = True
    zone_mask['others'][zone_mask['gate']] = False

  # zone_mask['others'][40:50] = False  ## remove central wall pattern change?!
  zone_mask['active'] = nbin+1
  zone_mask['silent'] = nbin+2

  print('now')

  para = {'nbin':nbin,'f':15,
          'bin_array':np.linspace(0,nbin-1,nbin),
          'bin_array_centers':np.linspace(0,nbin,nbin+1)-0.5,
          'coarse_factor':coarse_factor,
          'nbin_coarse':int(nbin/coarse_factor),
          'pxtomu':536/512,
          'L_track':100,

          'rate_thr':4,
          'width_thr':5,

          'trials_min_count':3,
          'trials_min_fraction':0.2,

          'Ca_thr':0,

          't_measures': get_t_measures(mouse),

          'nP':nP,
          'N_bs':10000,'repnum':1000,
          'qtl_steps':qtl_steps,'sigma':5,
          'qtl_weight':np.ones(qtl_steps)/qtl_steps,
          'names':['A_0','A','SD','theta'],
          #'CI_arr':[0.001,0.025,0.05,0.159,0.5,0.841,0.95,0.975,0.999],
          'CI_arr':[0.025,0.05,0.95,0.975],

          'plt_bool':plt_bool&(nP==0),
          'plt_theory_bool':True&(nP==0),
          'plt_sv':sv_bool&(nP==0),

          'mouse':mouse,
          'session':s,
          'pathSession':pathSession,
          'pathMouse':pathMouse,
          'pathFigs':'/home/wollex/Data/Science/PhD/Thesis/pics/Methods',#'/home/wollex/Data/Documents/Uni/2016-XXXX_PhD/Japan/Work/Results/pics/Methods',

          ### provide names for figures
          'svname_status':          'PC_fields%s_status.mat'%suffix,
          'svname_fields':          'PC_fields%s_para.mat'%suffix,
          'svname_firingstats':     'PC_fields%s_firingstats.mat'%suffix,

          ### modes, how to perform PC detection
          'modes':{'activity':'calcium',#'spikes',#          ## data provided: 'calcium' or 'spikes'
                    'info':'MI',                   ## information calculated: 'MI', 'Isec' (/second), 'Ispike' (/spike)
                    'shuffle':'shuffle_trials'     ## how to shuffle: 'shuffle_trials', 'shuffle_global', 'randomize'
                  },

          'zone_idx':zone_idx,
          'zone_mask':zone_mask
          }


## -----------------------------------------------------------------------------------------------------------------------

  #if nargin == 3:

    #para.t_s = get_t_measures(mouse);
    #para.nSes = length(para.t_s);

    #time_real = false;
  #if time_real
    #t_measures = get_t_measures(mouse);
    #t_mask_m = false(1,t_measures(nSes));
    #for s = 1:nSes-1
      #for sm = s+1:nSes
        #dt = t_measures(sm)-t_measures(s);
        #t_mask_m(dt) = true;
      #end
    #end
    #t_data_m = find(t_mask_m);
    #t_ses = t_measures;
    #t_mask = t_mask_m;
    #t_data = t_data_m;
    #nT = length(t_data);
  #else
    #t_measures = get_t_measures(mouse);
    #t_measures = t_measures(s_offset:s_offset+nSes-1);
##      t_measures = 1:nSes;    ## remove!
##      t_measures
    #t_ses = linspace(1,nSes,nSes);
    #t_data = linspace(1,nSes,nSes);
    #t_mask = true(nSes,1);
    #nT = nSes;
  #end

  return para
Esempio n. 10
0
    def plot_thesis(self, n, sig=[2, 3, 4], SNR_thr=2, r_thr=0):

        print('plotting for neurons %d and %d' % (n[0], n[1]))

        # n=[0,2452] ## in session 10 of mouse 762

        self.nCells, self.T = self.data['C'].shape
        T = self.T
        t_arr = np.linspace(0, self.T / self.f, self.T)

        plt.rcParams['font.size'] = 12
        idxes = (self.data['SNR'] > SNR_thr) & (self.data['r_values'] > r_thr)

        zlen = 500
        zstart = 1500
        zrange = range(zstart, (zstart + zlen))
        fig = plt.figure(figsize=(7, 5), dpi=150)
        col = np.array([1, 0, 0])
        ax_C_zoom = plt.axes([0.075, 0.7, 0.2, 0.25])
        add_number(fig, ax_C_zoom, order=1, offset=[-50, 0])

        ax_C_zoom = plt.axes([0.075 + 0.29, 0.7, 0.2, 0.25])
        add_number(fig, ax_C_zoom, order=2, offset=[-50, 0])
        for i in range(2):
            ax_C_zoom = plt.axes([0.075 + (0.29 * i), 0.7, 0.2, 0.25])
            ax_C_zoom.plot(t_arr[zrange],
                           self.data['C'][n[i], zrange],
                           'k',
                           linewidth=0.5)
            ax_C_zoom.set_ylim([0, 10 * self.baseline_C[n[i]]])
            ax_C_zoom.set_xlim([t_arr[zstart], t_arr[zstart + zlen]])
            ax_C_zoom.set_xticks([])
            ax_C_zoom.set_yticks([])
            ax_C_zoom.spines['top'].set_visible(False)
            ax_C_zoom.spines['right'].set_visible(False)
            if i == 0:
                ax_C_zoom.set_ylabel('C (a.u.)')

            ax_C = plt.axes([0.1 + (0.29 * i), 0.85, 0.125, 0.1])
            ax_C.plot(t_arr, self.data['C'][n[i], :], 'k', linewidth=0.5)
            ax_C.set_yticks([])
            ax_C.set_xlim([0, self.T / self.f])
            ax_C.spines['top'].set_visible(False)
            ax_C.spines['right'].set_visible(False)

            #print(self.T)

            ax_S_zoom = plt.axes([0.075 + (0.29 * i), 0.425, 0.2, 0.275])
            y_arr = np.linspace(0,
                                self.baseline_S[n[i]] + 4 * self.noise_S[n[i]],
                                100)
            x1 = norm.pdf(y_arr,
                          loc=self.baseline_S[n[i]],
                          scale=self.noise_S[n[i]])
            x1 = x1 / x1.max() * 5 + t_arr[zrange[-1]] - 5
            x2 = t_arr[zrange[-1]] * np.ones(100) - 5

            #plt.plot(x_offset,A_0,'ko')
            ax_S_zoom.fill_betweenx(y_arr,
                                    x1,
                                    x2,
                                    facecolor='r',
                                    alpha=1,
                                    edgecolor=None)
            ax_S_zoom.vlines(t_arr[zrange],
                             np.zeros(zlen),
                             self.data['S'][n[i], zrange],
                             colors='k',
                             linewidth=0.5)
            #ax_S_zoom.bar(t_arr,self.data['S'][n[i],:],width=1/self.f,facecolor='r')
            ax_S_zoom.plot(t_arr[zrange],
                           np.ones(zlen) * self.baseline_S[n[i]],
                           'r-',
                           linewidth=0.8)
            for j, s in enumerate(np.flipud(sig)):
                ax_S_zoom.plot(t_arr[zrange],
                               np.ones(zlen) * self.baseline_S[n[i]] +
                               s * self.noise_S[n[i]],
                               color=np.array(
                                   [1, 0.3 * (2 - j), 0.3 * (2 - j)]),
                               linestyle='--',
                               label='$\\theta_S = %d$' % s,
                               linewidth=0.8)

            ax_S_zoom.set_ylim([0, 10 * self.baseline_S[n[i]]])
            ax_S_zoom.set_xlabel('time in s')
            ax_S_zoom.set_yticks([])
            ax_S_zoom.set_xticks(np.linspace(0, 600, 61))
            ax_S_zoom.set_xlim([t_arr[zstart], t_arr[zstart + zlen]])
            ax_S_zoom.spines['top'].set_visible(False)
            ax_S_zoom.spines['right'].set_visible(False)

            if i == 0:
                ax_S_zoom.set_ylabel('S (a.u.)')

                ax_S = plt.axes([0.1 + (0.29 * i), 0.575, 0.125, 0.1])
                ax_S.vlines(t_arr,
                            np.zeros(T),
                            self.data['S'][n[i], :],
                            colors='k',
                            linewidth=0.5)
                ax_S.set_yticks([])
                ax_S.set_xlim([0, self.T / self.f])
                ax_S.spines['top'].set_visible(False)
                ax_S.spines['right'].set_visible(False)
            else:
                ax_S_zoom.legend(loc='upper right',
                                 bbox_to_anchor=[1, 1],
                                 fontsize=8)

        xlim_arr = [2, 1, 0.5]
        ax_fr = plt.axes([0.075, 0.125, 0.175, 0.15])
        add_number(fig, ax_fr, order=3, offset=[-50, 10])
        for j, s in enumerate(sig):
            self.N_spikes_S = np.floor(
                self.data['S'] / (self.baseline_S[:, np.newaxis] +
                                  s * self.noise_S[:, np.newaxis])).sum(1)

            ax_fr = plt.axes([0.075 + 0.22 * j, 0.125, 0.175, 0.15])
            ax_fr.hist(self.N_spikes_S[idxes] / (T / self.f),
                       np.linspace(0, xlim_arr[j], 51),
                       facecolor='tab:blue',
                       alpha=0.5,
                       label='SNR$\geq$%d' % SNR_thr)
            ax_fr.hist(self.N_spikes_S[~idxes] / (T / self.f),
                       np.linspace(0, xlim_arr[j], 51),
                       facecolor='tab:red',
                       alpha=0.5,
                       label='SNR<%d' % SNR_thr)
            #ax_fr.bar(0,0,color=np.array([1,0.3*j,0.3*j]),label='$\\theta_S = %d$'%s)
            ax_fr.set_xlim([0, xlim_arr[j]])
            ax_fr.set_yticks([])
            _, ymax = ax_fr.get_ylim()
            if j > 0:
                ax_fr.text(xlim_arr[j] * 0.5,
                           ymax * 0.8,
                           '$\\theta_S = %d$' % s,
                           fontsize=10)

            if j == 0:
                ax_fr.text(0.2,
                           ymax * 0.8,
                           '$\\theta_S = %d$' % s,
                           fontsize=10)
                ax_fr.set_ylabel('count')
            elif j == 1:
                ax_fr.set_xlabel('$\\bar{\\nu}$ [Hz]')

            ax_fr.spines['top'].set_visible(False)
            ax_fr.spines['right'].set_visible(False)

        Ns = (self.data['S'] > 0).sum(1)

        s_adapt = norm.ppf((1 - 0.01)**(1 / Ns))
        self.N_spikes_S = np.floor(
            self.data['S'] /
            (self.baseline_S[:, np.newaxis] +
             s_adapt[:, np.newaxis] * self.noise_S[:, np.newaxis])).sum(1)

        ax_fr = plt.axes([0.75, 0.125, 0.175, 0.15])
        ax_fr.hist(self.N_spikes_S[idxes] / (T / self.f),
                   np.linspace(0, (0.5)**j, 51),
                   facecolor='tab:blue',
                   alpha=0.5,
                   label='SNR$\geq$%d' % SNR_thr)
        ax_fr.hist(self.N_spikes_S[~idxes] / (T / self.f),
                   np.linspace(0, (0.5)**j, 51),
                   facecolor='tab:red',
                   alpha=0.5,
                   label='SNR<%d' % SNR_thr)
        #ax_fr.bar(0,0,color=np.array([1,0.3*j,0.3*j]),label='$\\theta_S = %d$'%s)
        ax_fr.set_xlim([0, 0.5**j])
        ax_fr.set_xlabel('$\\bar{\\nu}$ [Hz]')
        ax_fr.set_yticks([])
        if j == 0:
            ax_fr.set_ylabel('count')
        ax_fr.legend(loc='lower right', bbox_to_anchor=[1.2, 0.4], fontsize=10)
        ax_fr.spines['top'].set_visible(False)
        ax_fr.spines['right'].set_visible(False)
        _, ymax = ax_fr.get_ylim()
        #ax_fr.text(0.5**j*0.5,ymax*0.8,'$\\theta_S$ adapti'%s,fontsize=10)
        #ax_fr.text(0.2**j,ymax*0.9,'$\\theta_S = %d$'%s,fontsize=10)

        ax_theory = plt.axes([0.725, 0.75, 0.25, 0.2])
        add_number(fig, ax_theory, order=4, offset=[-50, 10])
        x_arr = np.linspace(1, 10, 101)
        for j, t in enumerate([500, 2000, 10000]):
            ax_theory.plot(x_arr,
                           1 - np.exp(t * np.log(norm.cdf(x_arr))),
                           color=np.array([0.3 * j, 0.3 * j, 0.3 * j]),
                           label='T=%d' % t)
        for j, s in enumerate(sig):
            ax_theory.plot(s, 1.1, 'v', color=np.array([1, 0.3 * j, 0.3 * j]))

        ax_theory.legend(fontsize=10,
                         loc='upper right',
                         bbox_to_anchor=[1.1, 1.1])
        ax_theory.set_xlabel('x')
        ax_theory.set_ylabel('$p(M_T > x$)')
        ax_theory.spines['top'].set_visible(False)
        ax_theory.spines['right'].set_visible(False)

        ax_theory2 = plt.axes([0.725, 0.425, 0.25, 0.2])
        add_number(fig, ax_theory2, order=5, offset=[-50, 10])
        T_arr = np.linspace(0, 10000, 1000)
        plt.plot(T_arr, norm.ppf((1 - 0.1)**(1 / T_arr)), 'k')
        plt.xlabel('$T$')
        plt.ylabel('$\\theta_S$')

        plt.tight_layout()
        plt.show(block=False)

        svPath = pathcat([self.pathSession, 'get_firingrates.png'])
        plt.savefig(svPath, format='png', dpi=150)
Esempio n. 11
0
def dewarp_sessions(basePath,
                    mouse,
                    sessions,
                    use_opt_flow=True,
                    plot_bool=False):

    max_thr = 0.01
    idxes = 15

    t_start = time.time()
    pathMouse = pathcat([basePath, mouse])

    nSes = sessions[-1] - sessions[0] + 1

    pathSession = pathcat([pathMouse, 'Session%02d' % sessions[0]])
    pathData = pathcat([pathSession, 'results_OnACID.mat'])

    ld = loadmat(pathData)
    template1 = ld['Cn']
    template1 -= template1.min()
    template1 /= template1.max()
    dims = template1.shape

    A1 = ld['A']
    A1 = scipy.sparse.vstack(
        [a.multiply(a > max_thr * a.max()) / a.sum() for a in A1.T]).T
    if 'csc_matrix' not in str(type(A1)):
        A1 = scipy.sparse.csc_matrix(A1)

    pathSave = pathcat([pathSession, 'footprints_dewarped'])
    #pickleData(A1,'%s.pkl'%pathSave,'save')
    savemat('%s.mat' % pathSave, {'A': A1, 'Cn': template1})
    for s in range(sessions[0], nSes):

        pathSession = pathcat([pathMouse, 'Session%02d' % (s + 1)])
        pathData = pathcat([pathSession, 'results_OnACID.mat'])

        print('Now processing %s' % pathData)
        ld = loadmat(pathData)
        template2 = ld['Cn']
        template2 -= template2.min()
        template2 /= template2.max()

        A2 = ld['A']
        if 'ndarray' not in str(type(A2)):
            A2 = A2.toarray()

        x_grid, y_grid = np.meshgrid(
            np.arange(0., dims[1]).astype(np.float32),
            np.arange(0., dims[0]).astype(np.float32))

        ## align ROIs from session 2 to the template from session 1
        print('adjust session position')
        C = np.fft.fftshift(
            np.real(
                np.fft.ifft2(
                    np.fft.fft2(template1) *
                    np.fft.fft2(np.rot90(template2, 2)))))
        max_pos = np.where(C == np.max(C))
        x_shift = (max_pos[1] - (dims[1] / 2 - 1)).astype(int)
        y_shift = (max_pos[0] - (dims[0] / 2 - 1)).astype(int)

        print('shift by x,y: %5.3f,%5.3f' % (x_shift, y_shift))
        x_remap = (x_grid - x_shift).astype(np.float32)
        y_remap = (y_grid - y_shift).astype(np.float32)

        A_2t = np.reshape(A2, dims + (-1, ), order='F').transpose(
            2, 0, 1)  # cast A2 to (x,y,n) -> (n,x,y) representation
        A2_shift = np.stack([
            cv2.remap(img.astype(np.float32), x_remap, y_remap,
                      cv2.INTER_NEAREST) for img in A_2t
        ],
                            axis=0)
        template2 = cv2.remap(template2, x_remap, y_remap, cv2.INTER_NEAREST)

        if use_opt_flow:  ## for each pixel, find according position in other map

            template1_norm = np.uint8(template1 * (template1 > 0) * 255)
            template2_norm = np.uint8(template2 * (template2 > 0) * 255)
            flow = cv2.calcOpticalFlowFarneback(np.uint8(template1_norm * 255),
                                                np.uint8(template2_norm * 255),
                                                None, 0.5, 3, 128, 3, 7, 1.5,
                                                0)
            x_remap = (flow[:, :, 0] + x_grid).astype(np.float32)
            y_remap = (flow[:, :, 1] + y_grid).astype(np.float32)

            A2 = np.stack([
                cv2.remap(img.astype(np.float32), x_remap, y_remap,
                          cv2.INTER_NEAREST) for img in A2_shift
            ],
                          axis=0)
            template2 = cv2.remap(template2, x_remap, y_remap,
                                  cv2.INTER_NEAREST)
        else:
            A2 = A2_shift
        A2 = np.reshape(
            A2.transpose(1, 2, 0),  # cast A2 to (x,y,n) again
            (A1.shape[0], A_2t.shape[0]),
            order='F')  # and

        print("Aligning done, t = %5.3fs" % (time.time() - t_start))

        #if max_thr > 0:
        A2 = scipy.sparse.csc_matrix(A2)
        A2 = scipy.sparse.vstack([
            a.multiply(a > max_thr * a.max()) / a.sum() for a in A2.T
        ]).T  ## normalizing

        pathSave = pathcat([pathSession, 'footprints_dewarped'])
        #pickleData(A2,'%s.pkl'%pathSave,'save')
        savemat('%s.mat' % pathSave, {'A': A2, 'Cn': template2})

        if plot_bool:
            plt.figure()
            plt.quiver(x_grid[::idxes, ::idxes],
                       y_grid[::idxes, ::idxes],
                       flow[::idxes, ::idxes, 0],
                       flow[::idxes, ::idxes, 1],
                       angles='xy',
                       scale_units='xy',
                       scale=0.25,
                       headwidth=4,
                       headlength=4,
                       width=0.002,
                       units='width')
            plt.show(block=False)