Esempio n. 1
0
def main():
    K = list(layouts.ahu_layout.keys())
    df = utils.prep_dataframe(keep=K)

    df_air_on = df[['ahu_1_air_on',
                    'ahu_2_air_on',
                    'ahu_3_air_on',
                    'ahu_4_air_on']]
    X_air_on = df_air_on.values

    df_outlet = df[['ahu_1_outlet',
                    'ahu_2_outlet',
                    'ahu_3_outlet',
                    'ahu_4_outlet']]
    X_outlet = df_outlet.values

    df_inlet = df[['ahu_1_inlet',
                   'ahu_2_inlet',
                   'ahu_3_inlet',
                   'ahu_4_inlet']]
    X_inlet = df_inlet.values

    df_inlet_rh = df[['ahu_1_inlet_rh',
                      'ahu_2_inlet_rh',
                      'ahu_3_inlet_rh',
                      'ahu_4_inlet_rh']]
    X_inlet_rh = df_inlet_rh.values

    df_power = df[['ahu_1_power',
                   'ahu_2_power',
                   'ahu_3_power',
                   'ahu_4_power']]
    X_power = df_power.values

    room_cooling = df['room_cooling_power_(kw)']

    plt.scatter(X_air_on[:, 0] - X_outlet[:, 0], X_power[:, 0])

    plt.show()
Esempio n. 2
0
df = pd.read_csv('./data/emails.csv')

# Pre-process complete dataset
#df_parsed = pd.DataFrame(list(map(get_email_from_string, df['message'])))

# Subset emails in sent folders only
sent = df.loc[df['file'].str.contains('sent')]

# From sent subset extract and process emails of Kaminski
kaminski = sent.loc[sent['file'].str.contains('kaminski-v')]
kaminski_parsed = pd.DataFrame(
    list(map(get_email_from_string, kaminski['message'])))
kaminski_parsed.dropna(subset=['To'], inplace=True)
kaminski_parsed.to_csv('./data/kaminski_parsed.csv', index=False)

kaminski_comm = prep_dataframe(kaminski_parsed)
kaminski_comm['recipients'] = kaminski_comm['recipients'].apply(
    lambda x: x.split(','))

kaminski_full = get_pairwise_communication(kaminski_comm['sender'],
                                           kaminski_comm['recipients'])
kaminski_full['recipient'] = kaminski_full['recipient'].str.strip(' \n\t')

kaminski_sender = kaminski_full[kaminski_full['sender'].str.contains(
    'vince.kaminski.enron.com|[email protected]')]
to_kaminski = kaminski_full[kaminski_full['recipient'].str.contains(
    'vince.kaminski.enron.com|[email protected]')]

to_kaminski_edges = to_kaminski.value_counts(['sender', 'recipient'])
to_kaminski_edges = to_kaminski_edges.reset_index()
to_kaminski_edges = to_kaminski_edges.rename(columns={0: 'num_emails'})
Esempio n. 3
0
def main(method, transform, temporal, layout, hybrid, threshold, output):
    variables = getattr(layouts, layout)

    K = list(variables.keys())

    df = utils.prep_dataframe(keep=K)

    if temporal:
        df_shifted = utils.create_shifted_features(df)
        df = df.join(df_shifted, how="outer")
        df = df.dropna()

    if transform:
        print("* Tranform data")
        X = tr.to_normal(df.values)
        df = pd.DataFrame(X, index=df.index.values, columns=df.columns.values)

    X = df.values

    if hybrid:
        model = HRF(k=5, k_star=10, variables_names=df.columns.values)
    else:
        model = GMRF(method=method[0])

    model.fit(X)

    if not hybrid:
        print("* Selected alpha = {}".format(model.alpha_))
    else:
        print("* Selected k = {}, k star = {}".format(model.k, model.k_star))

    if threshold:
        Q = model.precision_.copy()
        ts = np.arange(0., 1., 0.001)

        bics = np.empty(len(ts))
        connectivity = np.empty(len(ts))

        n = Q.shape[0]
        gmrf_test = GMRF()
        gmrf_test.mean_ = np.mean(X, axis=0)
        for i, t in enumerate(ts):
            Q[Q < t] = 0
            gmrf_test.precision_ = Q
            bics[i], _ = gmrf_test.bic(X)
            connectivity[i] = 1 - np.size(np.where(Q == 0)[0]) / (n * n)

        fig, (ax, ax1) = plt.subplots(2, 1)
        ax.plot(connectivity)
        ax1.plot(bics)

    if output:
        results_name = os.path.join(os.path.dirname(__file__), "../results/")
        if hybrid:
            BNs = np.empty(len(model.variables_names), dtype=object)
            for i in range(len(BNs)):
                BNs[i] = (model.bns[i].variables_names, model.bns[i].nodes, model.bns[i].edges)
            np.save(results_name + output + "_bns", BNs)
        else:
            np.save(results_name + output + "_prec", model.precision_)
            np.save(results_name + output + "_mean", model.mean_)
            np.save(results_name + output + "_bic_scores", model.bic_scores)

    if not hybrid:
        plt.figure()
        plt.plot(model.bic_scores)

        fig, ax = plt.subplots(1, 1)
        pl.bin_precision_matrix(model.precision_, df.columns.values, ax)

        plt.show()
Esempio n. 4
0
import os
import sys
import utils
import layouts
import numpy as np
import pandas as pd

K = list(layouts.datacenter_layout.keys())

df = utils.prep_dataframe(keep=K)
df_shifted = utils.create_shifted_features(df)
df = df.join(df_shifted, how="outer")
df = df.dropna()

kf_scores = np.load("../results/gmrfNone_kf_scores.npy")
r2 = np.load("../results/gmrfNone_r2.npy")
kf_scores_hybrid = np.load("../results/hybridNone_kf_scores.npy")
r2_hybrid = np.load("../results/hybridNone_r2.npy")

def tables(data, r2, name):
    print(name.upper())
    columns = ["\textbf{Variables}", "\textbf{MAD t = 1}", "\textbf{MAD t = 4}", "\textbf{MAD t = 8}", "\textbf{$R^2$ = 0}"]
    table = pd.DataFrame(columns=columns)

    j = 0
    mean = np.mean(data, axis=0)
    std = np.std(data, axis=0)

    for i, n in enumerate(df.columns.values):
        if 'l1_' not in n:
            v = ((n.replace("_", " ")).upper())[:5]
Esempio n. 5
0
def main():
    K = list(layouts.ahu_layout.keys())
    df = utils.prep_dataframe(keep=K)

    df_air_on = df[['ahu_1_air_on',
                    'ahu_2_air_on',
                    'ahu_3_air_on',
                    'ahu_4_air_on']]
    X_air_on = df_air_on.values

    df_outlet = df[['ahu_1_outlet',
                    'ahu_2_outlet',
                    'ahu_3_outlet',
                    'ahu_4_outlet']]
    X_outlet = df_outlet.values

    df_inlet = df[['ahu_1_inlet',
                   'ahu_2_inlet',
                   'ahu_3_inlet',
                   'ahu_4_inlet']]
    X_inlet = df_inlet.values

    df_inlet_rh = df[['ahu_1_inlet_rh',
                      'ahu_2_inlet_rh',
                      'ahu_3_inlet_rh',
                      'ahu_4_inlet_rh']]
    X_inlet_rh = df_inlet_rh.values

    df_power = df[['ahu_1_power',
                   'ahu_2_power',
                   'ahu_3_power',
                   'ahu_4_power']]
    X_power = df_power.values

    cooling_shifted = df['room_cooling_power_(kw)'].shift(1)
    cooling_shifted = cooling_shifted.dropna()

    linreg = LinearRegression(normalize=True)

    coefs = np.empty(5)
    intercepts = np.empty(5)
    p = 0

    powers = []
    mean_power = np.empty(5)

    for i in range(4):
        if i != 2:
            X = X_air_on[:, i].reshape(X_air_on.shape[0], 1)
            Y = X_outlet[:, i].reshape(X_outlet.shape[0], 1)
            linreg.fit(X, Y)
            print("{} Linear regression: intercept = {}, coef = {}"
                    .format(i, linreg.intercept_, linreg.coef_))
            coefs[p] = linreg.coef_[0][0]
            intercepts[p] = linreg.intercept_[0]
            powers.append(X_power[:, i])
            mean_power[p] = np.mean(X_power[:, i])
            p += 1
        else:
            indices = np.array([np.where(X_outlet[:, i] < 21.5)[0],
                                np.where(X_outlet[:, i] > 23.3)[0]])

            for j in range(indices.shape[0]):
                X = X_air_on[:, i][indices[j]].reshape(np.size(indices[j]), 1)
                Y = X_outlet[:, i][indices[j]].reshape(np.size(indices[j]), 1)
                linreg.fit(X, Y)
                print("{} Linear regression: intercept = {}, coef = {}"
                        .format(i, linreg.intercept_, linreg.coef_))
                coefs[p] = linreg.coef_[0][0]
                intercepts[p] = linreg.intercept_[0]
                powers.append(X_power[:, i][indices[j]])
                mean_power[p] = np.mean(X_power[:, i][indices[j]])
                p += 1

    p = 0
    c = ['b', 'g', 'r', 'm']
    scatters = []

    plt.figure()
    s0 = plt.scatter(X_air_on[:, 0], X_outlet[:, 0], c=c[0])
    s1 = plt.scatter(X_air_on[:, 1], X_outlet[:, 1], c=c[1])
    s2 = plt.scatter(X_air_on[:, 2], X_outlet[:, 2], c=c[2])
    s3 = plt.scatter(X_air_on[:, 3], X_outlet[:, 3], c=c[3])
    plt.xlabel('Air on')
    plt.ylabel('Outlet')

    plt.legend((s0, s1, s2, s3), ("Ahu 1", "Ahu 2", "Ahu 3", "Ahu 4"))
        # if i != 2:
        #     x = np.sort(X_air_on[:, i])
        #     x = np.arange(10, 30)
        #     y = coefs[p] * x + intercepts[p]
        #     plt.plot(x, y, 'r-')
        #     p += 1
        # else:
        #     indices = np.array([np.where(X_outlet[:, i] < 21)[0],
        #                         np.where(X_outlet[:, i] > 23.5)[0]])

        #     for j in range(indices.shape[0]):
        #         x = np.sort(X_air_on[:, i][indices[j]])
        #         x = np.arange(10, 30)
        #         y = coefs[p] * x + intercepts[p]
        #         plt.plot(x, y, 'g-')
        #         p += 1

    plt.figure()
    for i in range(5):
        X = powers[i]
        plt.scatter(np.ones(X.shape[0]) * i, X, alpha=0.01)

    plt.figure()
    plt.scatter(intercepts, coefs, s=mean_power * 100 + 10, c=['r', 'b', 'g', 'c', 'm'])

    # for i in range(4):
    #     plt.figure()
    #     plt.scatter(df['acu_supply_temperature_(c)'] - X_air_on[:, i], X_power[:, i])

    # plt.figure()
    # plt.scatter(np.sum(X_air_on, axis=1), np.sum(X_outlet, axis=1), s=df['room_cooling_power_(kw)'])

    plt.figure()
    plt.scatter((np.sum(X_air_on, axis=1) - np.sum(X_outlet, axis=1))[:-1], cooling_shifted)
    plt.xlabel("Air on - Outlet")
    plt.ylabel("Cooling power")

    # X = np.hstack((X_air_on[:, :3], X_outlet[:, :3]))
    #X = np.array([X_air_on[:, 3], X_outlet[:, 3]]).T
    X = X_air_on - X_outlet
    print(X.shape)
    Y = df['room_cooling_power_(kw)'].reshape(X.shape[0], 1)
    Y = X_power

    for degree in [0, 1, 2, 3]:
        kf = KFold(n=X.shape[0], n_folds=4)
        scores = []
        for train, test in kf:
            model = make_pipeline(PolynomialFeatures(degree), LinearRegression())
            model.fit(X[train], Y[train])
            s = model.score(X[test], Y[test])
            scores.append(s)
            print("Degree {}: score = {}".format(degree, s))
        print("Mean score = {}".format(np.mean(scores)))

    linreg.fit(X, Y)
    print("Coef = {}, intercept = {}".format(linreg.coef_, linreg.intercept_))

    plt.show()
Esempio n. 6
0
def main():
    K = list(layouts.datacenter_layout.keys())

    df = utils.prep_dataframe(keep=K)
    df_shifted = utils.create_shifted_features(df)
    df = df.join(df_shifted, how="outer")
    df = df.dropna()
    names = list(filter(lambda x: 'l1_' not in x, df.columns.values))

    # a = np.random.normal(5, 2, 3000)
    # d = np.random.normal(-2, 3, 3000)
    # b = a * 3 + 9 + np.random.normal(0, 0.2, 3000)
    # c = 4 * d + (-5) * b + 11 + np.random.normal(0, 0.01, 3000)
    # X = np.array([a, b, c, d]).T
    # names = ['c', 'a']

    # df = pd.DataFrame.from_records(columns=np.array(['a', 'b', 'c', 'd']), data=X)

    X = df.values

    gmrf = GMRF(variables_names=df.columns.values, alpha=0.1)
    hrf = HRF(k=5, k_star=10, variables_names=df.columns.values)
    gbn = GBN(variables_names=df.columns.values)

    X_train, X_test = train_test_split(X, test_size=0.25)

    cv_scores = []
    train_scores = []

    pool = mp.Pool(processes=8)
    results = [pool.apply_async(scoring,
               args=(df, hrf, names, X_train[:i, :], X_test, i))
               for i in range(100, X_train.shape[0], 100)]

    output = [p.get() for p in results]
    output.sort()
    output = [np.array(t) for t in zip(*output)]

    cv_scores = output[2]
    train_scores = output[1]

    # hl, = plt.plot([], [])
    # for i in range(100, X_train.shape[0], 100):
    #     print("* Round {}".format(int(i / 100)))
    #     train_score, cv_score = scoring(df, gmrf, names, X_train[:i, :], X_test, i)

    #     cv_scores.append(cv_score)
    #     train_scores.append(train_score)

    #     hl.set_xdata(numpy.append(hl.get_xdata(), i))
    #     hl.set_ydata(numpy.append(hl.get_ydata(), train_score))
    #     plt.draw()

    #     # plt.plot(cv_scores, 'bo-')
    #     # plt.plot(train_scores, 'ro-')
    #     # plt.draw()

    # plt.ioff()
    plt.plot(range(100, X_train.shape[0], 100), cv_scores, 'bo-')
    plt.plot(range(100, X_train.shape[0], 100), train_scores, 'ro-')
    plt.show()
Esempio n. 7
0
# These are the "Tableau 20" colors as RGB.
tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),
             (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),
             (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
             (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
             (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]

# Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts.
for i in range(len(tableau20)):
    r, g, b = tableau20[i]
    tableau20[i] = (r / 255., g / 255., b / 255.)

K = list(layouts.datacenter_layout.keys())

df_static = utils.prep_dataframe(keep=K)
df_shifted = utils.create_shifted_features(df_static)
df = df_static.join(df_shifted, how="outer")
df = df.dropna()

kf_scores = np.load("../results/gmrfNone_kf_scores.npy")
r2 = np.load("../results/gmrfNone_r2.npy")
kf_scores_hybrid = np.load("../results/hybridNone_kf_scores.npy")
r2_hybrid = np.load("../results/hybridNone_r2.npy")

bns = np.load("../results/hybrid_bns.npy")

# GMRF BIC plot
def gmrf_bic_plot():
    print("BIC plot")
    fig, ax = newfig(1.)
Esempio n. 8
0
def main(alpha, transform, temporal, layout, steps, output, hybrid):
    variables = getattr(layouts, layout)

    K = list(variables.keys())

    df = utils.prep_dataframe(keep=K)

    if temporal:
        df_shifted = utils.create_shifted_features(df)
        df = df.join(df_shifted, how="outer")
        df = df.dropna()

        names = list(filter(lambda x: 'l1_' not in x, df.columns.values))

    if transform:
        print("* Tranform data")
        X = tr.to_normal(df.values)
        df = pd.DataFrame(X, index=df.index.values, columns=df.columns.values)

    if hybrid:
        model = HRF(variables_names=df.columns.values, k=5, k_star=10)
    else:
        model = GMRF(variables_names=df.columns.values, alpha=alpha)

    kf = KFold(df.shape[0], n_folds=5, shuffle=False)

    pool = mp.Pool(processes=5)

    print("* Scoring")
    kf_scores = [pool.apply_async(scoring,
                 args=(df, model, names, train, test, steps, id))
                 for id, (train, test) in enumerate(kf)]

    results = [p.get() for p in kf_scores]
    results = [np.array(t) for t in zip(*results)]

    r2 = results[0]
    kf_scores = results[1]
    #variances = results[2]

    r2 = np.sum(r2, axis=0) / len(kf)
    scores = np.sum(kf_scores, axis=0) / len(kf)
    #var = np.sum(variances, axis=0) / len(kf)

    if output:
        results_name = os.path.join(os.path.dirname(__file__),
                                    "../results/")
        np.save(results_name + output + str(steps) + "_kf_scores", kf_scores)
        np.save(results_name + output + str(steps) + "_scores", scores)
        np.save(results_name + output + str(steps) + "_r2", r2)
       # np.save(results_name + output + str(steps) + "_var", var)

    labels = df.columns.values
    labels = list(filter(lambda x: 'ahu' not in x, labels))

    if steps == 1:
        plt.figure()
        plt.boxplot(scores)
        plt.xticks(np.arange(1, 40), labels, rotation=90)
    else:
        plt.figure()
        plt.plot(scores)
        plt.figure()
        plt.plot(r2)

    plt.show()
Esempio n. 9
0
def main():
    K = list(layouts.ahu_layout.keys())
    df = utils.prep_dataframe(keep=K)

    # df[['ahu_1_inlet', 'ahu_1_outlet', 'ahu_1_power']].plot()
    # plt.figure()
    # plt.scatter(df['ahu_1_inlet'] - df['ahu_1_outlet'], df['ahu_1_power'])
    # plt.figure()
    # plt.scatter(df['ahu_2_inlet'] - df['ahu_2_outlet'], df['ahu_2_power'])
    # plt.figure()
    # plt.scatter(df['ahu_3_inlet'] - df['ahu_3_outlet'], df['ahu_3_power'])
    # plt.figure()
    # plt.scatter(df['ahu_4_inlet'] - df['ahu_4_outlet'], df['ahu_4_power'])

    df_air_on = df[['ahu_1_air_on', 'ahu_2_air_on', 'ahu_3_air_on', 'ahu_4_air_on']]
    X_air_on = df_air_on.values

    df_outlet = df[['ahu_1_outlet', 'ahu_2_outlet', 'ahu_3_outlet', 'ahu_4_outlet']]
    X_outlet = df_outlet.values

    df_inlet = df[['ahu_1_inlet', 'ahu_2_inlet', 'ahu_3_inlet', 'ahu_4_inlet']]
    X_inlet = df_inlet.values

    df_inlet_rh = df[['ahu_1_inlet_rh', 'ahu_2_inlet_rh', 'ahu_3_inlet_rh', 'ahu_4_inlet_rh']]
    X_inlet_rh = df_inlet_rh.values

    df_power = df[['ahu_1_power', 'ahu_2_power', 'ahu_3_power', 'ahu_4_power']]
    X_power = df_power.values

    # plt.scatter(X_air_on.ravel() - X_outlet.ravel(), X_power.ravel())
    # plt.scatter(X_air_on.ravel() - X_outlet.ravel(), X_power.ravel())
    # for i in range(4):
        # plt.figure()
        # plt.plot(X_air_on[:,i])
        # plt.plot(X_outlet[:,i])
        # plt.plot(X_power[:,i])
        # plt.figure()
        # plt.scatter(X_power[:,i], (X_inlet[:,i] + X_air_on[:,i]) / 2 - X_outlet[:,i])
        # plt.ylabel('Mean air on / inlet - outlet')
        # plt.xlabel('Power')
        # plt.figure()
        # plt.scatter(X_power[:,i], X_air_on[:,i] - X_outlet[:,i])
        # plt.ylabel('Air on - outlet')
        # plt.xlabel('Power')
        # plt.title('AHU {}'.format(i + 1))
        # plt.figure()
        # plt.scatter(X_power[:,i], X_inlet[:,i] - X_outlet[:,i])
        # plt.ylabel('Inlet - outlet')
        # plt.xlabel('Power')
        # plt.figure()
        # plt.scatter(X_air_on[:, i], X_outlet[:, i])
        # plt.ylabel('Outlet')
        # plt.xlabel('Air on')
        # plt.figure()
        # plt.scatter(X_inlet[:, i], X_outlet[:, i])
        # plt.ylabel('Outlet')
        # plt.xlabel('Inlet')
        # plt.figure()
        # plt.scatter(X_outlet[:,i], (X_inlet[:,i] + X_air_on[:,i]) / 2 - X_outlet[:,i])
        # plt.ylabel('Mean air on / inlet - outlet')
        # plt.xlabel('Outlet')

    # plt.figure()
    # plt.scatter(np.sum(df_air_on, axis=1) - np.sum(df_outlet, axis=1),
    #             df['room_cooling_power_(kw)'])
    # plt.figure()
    # plt.scatter((np.sum(df_outlet, axis=1)),
    #             df['room_cooling_power_(kw)'])
    plt.figure()
    plt.scatter(X_power[:,2], X_air_on[:,2] - X_outlet[:,2])
    plt.ylabel('Air on - outlet')
    plt.xlabel('Power')
    plt.title('AHU 3')

    low = np.where(X_air_on[:,2] - X_outlet[:,2] < 4)[0]
    high = np.where(X_air_on[:,2] - X_outlet[:,2] >= 4)[0]

    linreg = LinearRegression()

    linreg.fit(X_power[low, 2].reshape(len(low), 1), (X_air_on[low, 2] - X_outlet[low, 2]).reshape(len(low), 1))
    plt.plot(X_power[low, 2], linreg.predict((X_power[low, 2]).reshape(len(low), 1)))
    print("{} Linear regression: intercept = {}, coef = {}".format(0, linreg.intercept_, linreg.coef_))
    linreg.fit(X_power[high, 2].reshape(len(high), 1), (X_air_on[high, 2] - X_outlet[high, 2]).reshape(len(high), 1))
    plt.plot(X_power[high, 2], linreg.predict((X_power[high, 2]).reshape(len(high), 1)))
    print("{} Linear regression: intercept = {}, coef = {}".format(0, linreg.intercept_, linreg.coef_))
    # for i in range(4):
        # linreg.fit(X_air_on[:, i], X_outlet[:, i])
        # print("{} Linear regression: intercept = {}, coef = {}".format(i, linreg.intercept_, linreg.coef_))

    plt.figure()
    powersLines = plt.plot(X_power)
    plt.xlabel("Time")
    plt.ylabel("Power")
    plt.legend(powersLines, ("AHU 1", "AHU 2", "AHU 3", "AHU 4"))

    plt.figure()
    powersLines = plt.plot(X_outlet)
    plt.xlabel("Time")
    plt.ylabel("Outlet")

    plt.legend(powersLines, ("AHU 1", "AHU 2", "AHU 3", "AHU 4"))

    plt.figure()
    plt.scatter(X_air_on[:, 0] - X_outlet[:, 0], X_air_on[:, 1] - X_outlet[:, 1])
    plt.scatter(X_air_on[:, 3] - X_outlet[:, 3], X_air_on[:, 1] - X_outlet[:, 1])


    plt.show()
Esempio n. 10
0
def main(layout, model, transform, output):
    variables = getattr(layouts, layout)

    K = list(variables.keys())

    df = utils.prep_dataframe(keep=K)

    df_shifted = utils.create_shifted_features(df)
    df = df.join(df_shifted, how="outer")
    df = df.dropna()

    # print(list(enumerate(df.columns.values)))
    # assert False

    if transform:
        print("* Tranform data")
        X = tr.to_normal(df.values)
        df = pd.DataFrame(X, index=df.index.values, columns=df.columns.values)

    X = df.values

    if model[0] == 'gmrf':
        model = GMRF(variables_names=df.columns.values, alpha=0.1)
    elif model[0] == 'hybrid':
        model = HRF(k=5, k_star=10, variables_names=df.columns.values)

    lim = int(X.shape[0] * 0.75)
    X_train = X[:lim]
    X_test = X[lim:]

    model.fit(X_train)
    print("* Model Fitted")

    # controls_vars = ['ahu_1_outlet', 'ahu_2_outlet', 'ahu_3_outlet', 'ahu_4_outlet']
    controls_vars = ['ahu_3_outlet']
    controller = Controller(6, 15, 30)
    mdp = MDP(model, 1000, reward, 0.8, feature_creator, controller,
              controls_vars, n_jobs=3)
    mdp.learn()

    # plt.figure()
    # plt.hist(test[:, 38:42].ravel(), bins=5, range=(5, 30))

    # plt.figure()
    # plt.plot(test[:, 38:42])

    actions, states = run_simulation(X_test, controls_vars, mdp, model, controller)

    print(actions)
    actions_values_one = [None] * len(controls_vars)
    actions_values_two = [None] * len(controls_vars)
    for i in range(len(controls_vars)):
        actions_values_one[i] = [(j, a[i][1]) for j, a in enumerate(actions)
                                if a[i][0] == 0]
        actions_values_two[i] = [(j, a[i][1]) for j, a in enumerate(actions)
                                if a[i][0] == 1]

        actions_values_one[i] = list(zip(*actions_values_one[i]))
        actions_values_two[i] = list(zip(*actions_values_two[i]))

    for i in range(len(controls_vars)):
        plt.figure()
        if len(actions_values_one[i]) != 0:
            plt.plot(list(actions_values_one[i][0]), list(actions_values_one[i][1]), 'b')
        if len(actions_values_two[i]) != 0:
            plt.plot(list(actions_values_two[i][0]), list(actions_values_two[i][1]), 'g')
        plt.title(controls_vars[i])

    max_states = np.amax(states, axis=1)
    mean_states = np.mean(states, axis=1)
    min_states = np.amin(states, axis=1)

    plt.figure()
    plt.plot(max_states, 'r')
    plt.plot(mean_states, 'g')
    plt.plot(min_states, 'b')

    # plt.figure()
    # plt.plot(actions[:, 0], label="1")
    # plt.plot(actions[:, 1], label="2")
    # plt.plot(actions[:, 2], label="3")
    # plt.plot(actions[:, 3], label="4")
    # plt.legend(loc=0)

    # print(np.mean(actions, axis=0))

    plt.show()