unk_token='[UNK]', pad_token='[PAD]') tokenizer = JiebaTokenizer(vocab) label_map = {0: 'dissimilar', 1: 'similar'} # Constructs the newtork. model = SimNet(network=args.network, vocab_size=len(vocab), num_classes=len(label_map)) # Loads model parameters. state_dict = paddle.load(args.params_path) model.set_dict(state_dict) print("Loaded parameters from %s" % args.params_path) # Firstly pre-processing prediction data and then do predict. data = [ ['世界上什么东西最小', '世界上什么东西最小?'], ['光眼睛大就好看吗', '眼睛好看吗?'], ['小蝌蚪找妈妈怎么样', '小蝌蚪找妈妈是谁画的'], ] examples = preprocess_prediction_data(data, tokenizer) results = predict(model, examples, label_map=label_map, batch_size=args.batch_size, pad_token_id=vocab.token_to_idx.get('[PAD]', 0)) for idx, text in enumerate(data): print('Data: {} \t Label: {}'.format(text, results[idx]))
# Loads vocab. vocab = load_vocab(args.vocab_path) label_map = {0: 'negative', 1: 'positive'} # Constructs the newtork. model = ppnlp.models.Senta(network=args.network, vocab_size=len(vocab), num_classes=len(label_map)) # Loads model parameters. state_dict = paddle.load(args.params_path) model.set_dict(state_dict) print("Loaded parameters from %s" % args.params_path) # Firstly pre-processing prediction data and then do predict. data = [ '这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般', '怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片', '作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。', ] examples = preprocess_prediction_data(data, vocab) results = predict(model, examples, label_map=label_map, batch_size=args.batch_size, collate_fn=generate_batch) for idx, text in enumerate(data): print('Data: {} \t Label: {}'.format(text, results[idx]))