from datetime import datetime

from utils import read_batch_run, read_case_data, read_run, infection_rate
from plot import comparison_plots

#%%

sns.set_style("whitegrid")
sns.set_context("paper")
sns.set_palette("deep")

dateFormater = ConciseDateFormatter(AutoDateLocator())

#%%

rki, hospital = read_case_data("berlin-cases.csv", "berlin-hospital.csv")

#%%


def infections(f):
    ev = pd.read_csv(f, sep="\t")

    no_inf = set(ev.infected).difference(set(ev.infector))

    res = np.sort(
        np.concatenate(
            (ev['infector'].value_counts().array, np.zeros(len(no_inf)))))

    return pd.DataFrame(res)
Esempio n. 2
0
"""

#%%

sns.set_style("whitegrid")
sns.set_context("paper")
sns.set_palette("deep")

dateFormater = ConciseDateFormatter(AutoDateLocator())

palette = sns.color_palette()

#%%

rki, meldedatum, hospital = read_case_data("berlin-cases.csv",
                                           "berlin-cases-meldedatum.csv",
                                           "berlin-hospital.csv")

#%%

import zipfile

z = zipfile.ZipFile(
    "../../../../../public-svn/matsim/scenarios/countries/de/episim/battery/2021-02-09/paperAggr/summaries/79.zip"
)

with z.open("79.outdoorFraction.tsv") as f:
    df = pd.read_csv(f,
                     delimiter="\t",
                     index_col=0,
                     parse_dates=[1],