Esempio n. 1
0
def view_all_salient_features(model_options, labels=None, num_examples=None, folderpath='', data=None):

    imgs = []

    for label in range(10):

        if data is None:
            imgs_label, _ = read_results(label, folderpath)[-1]
        else:
            imgs_label = data[label]

        imgs_label = imgs_label[0:1, :, :]
        salient_features = get_salient_features(model_options, imgs_label, label,
                                                grad_sign='pos', num_keep=200, as_binary=True, mul_weights=False)

        imgs.append(salient_features)

    imgs = np.array(imgs)

    if labels:
        imgs = imgs[labels]
    if num_examples:
        imgs = imgs[:, :num_examples]

    shape = list(imgs.shape[:2])
    shape += [model_options['image_dim_size']] * 2

    graph_grid(imgs, shape=shape)
Esempio n. 2
0
 def _start_session(self):
     """Starts a session (either a new one or one that has been loaded)."""
     exam_data = self.exam_data
     session_cfg = exam_data.session
     self.save_pattern = os.path.join(self.session_dir, 'captures',
                                      session_cfg['save-filename-pattern'])
     self.answers_file = os.path.join(self.session_dir,
                                      'eyegrade-answers.csv')
     try:
         self._read_student_ids()
     except Exception as e:
         self.interface.show_error(('The student list cannot be read: '
                                   + str(e)))
         return
     self.imageproc_options = imageproc.ExamCapture.get_default_options()
     if exam_data.id_num_digits and exam_data.id_num_digits > 0:
         self.imageproc_options['read-id'] = True
         self.imageproc_options['id-num-digits'] = exam_data.id_num_digits
     self.imageproc_options['left-to-right-numbering'] = \
                                         exam_data.left_to_right_numbering
     # Set the debug options in imageproc_options:
     self._action_debug_changed()
     self.imageproc_context.open_camera()
     if self.imageproc_context.camera is None:
         self.interface.show_error(('No camera found. Connect a camera and '
                                   'try to start the session again.'))
         return
     if not os.path.isfile(self.answers_file):
         self.image_id = 1
     else:
         results = utils.read_results(self.answers_file,
                                      allow_question_mark=True)
         self.image_id = 1 + max([int(r['seq-num']) for r in results])
     self._start_search_mode()
Esempio n. 3
0
def proc_all_results(num_examples,
                     save_filename=None,
                     res=None,
                     folderpath=''):

    # TODO: modify this to use graph_grid

    num_results = 10

    fig = plt.figure(figsize=(12, 12))
    axs = ImageGrid(fig,
                    rect=111,
                    nrows_ncols=(num_results, num_examples),
                    axes_pad=0.35,
                    label_mode='L')

    for label in range(num_results):

        # TODO: don't hardcode timestep
        if res is None:
            imgs, softmaxs = read_results(label, folderpath)[-1]
        else:
            imgs, softmaxs = res[label]

        axs_label = axs[label * num_examples:(label + 1) * num_examples]

        proc_results_label(label, imgs, softmaxs, axs_label)

    plt.tight_layout()
    if save_filename:
        fig.savefig(save_filename, bbox_inches='tight')
    else:
        plt.show()
Esempio n. 4
0
def proc_all_results(num_examples, save_filename=None, res=None, folderpath=''):

    # TODO: modify this to use graph_grid

    num_results = 10

    fig = plt.figure(figsize=(12, 12))
    axs = ImageGrid(fig, rect=111, nrows_ncols=(num_results, num_examples),
                    axes_pad=0.35, label_mode='L')

    for label in range(num_results):

        # TODO: don't hardcode timestep
        if res is None:
            imgs, softmaxs = read_results(label, folderpath)[-1]
        else:
            imgs, softmaxs = res[label]

        axs_label = axs[label * num_examples: (label + 1) * num_examples]

        proc_results_label(label, imgs, softmaxs, axs_label)

    plt.tight_layout()
    if save_filename:
        fig.savefig(save_filename, bbox_inches='tight')
    else:
        plt.show()
Esempio n. 5
0
def modify_results(results_filename, exam_config_filename,
                   output_filename, invalidate, set_correct):
    config = utils.read_config()
    results = utils.read_results(results_filename)
    exam_data = utils.ExamConfig(exam_config_filename)
    for result in results:
        modify(result, exam_data, invalidate, set_correct)
    utils.write_results(results, output_filename, config['csv-dialect'])
Esempio n. 6
0
def eval_model(dataset_file, model_filename, results_filename):
    """
    Docstring for eval_model.
    """
    model = None

    # Load your best model.
    if model_filename:

        model_filename = Path(model_filename)
        model = torch.load(model_filename)

        if CUDA:
            model = model.cuda()

        print("\nLoading model from", model_filename.absolute())

    if model:

        N_SUBJ = 160
        data = utils.read_memfile(dataset_file,
                                  shape=(N_SUBJ, 3750),
                                  dtype='float32')
        results = utils.read_results(results_filename)

        # y is generated as we do not have predictions here.
        fake_y = np.random.randint(1, 32, size=((N_SUBJ, 4)))
        fake_y[0, -1] = 32

        data = {'X': data, 'y': fake_y}
        data = utils.Data(precomputed=data, augmentation=False)

        # Overwrite ymap in Data with one computed using real data.
        data.ymap = results['ymap']

        dataloader = torch.utils.data.DataLoader(data,
                                                 batch_size=64,
                                                 num_workers=2)

        # Generate predictions with model.
        results = experiments.evalu_loop(model, dataloader, return_preds=True)
        y_pred = results['preds']

        # Convert ID column back to original format.
        ids = y_pred[:, -1]
        ids = data.ymap.inverse_transform(ids.astype(np.int))
        y_pred[:, -1] = ids

    else:
        print("\nYou did not specify a model, generating dummy data instead!")
        c = 32
        n = 10

        y_pred = np.concatenate(
            [np.random.rand(n, 3),
             np.random.randint(0, c, (n, 1))], axis=1).astype(np.float32)

    return (y_pred)
Esempio n. 7
0
def analyze(results_filenames, exam_cfg_filename):
    exam_data = utils.ExamConfig(exam_cfg_filename)
    results = []
    for results_file in results_filenames:
        results.extend(utils.read_results(results_file, exam_data.permutations))
    stats_q = stats_by_question(results, exam_data.num_questions)
    print_stats_by_question(stats_q)
    print
    stats_m = stats_by_model(results, exam_data.num_questions,
                             exam_data.models)
    print_stats_by_model(stats_m)
    plot_stats_by_question(stats_q)
    return results
Esempio n. 8
0
def augment_data(data, folderpath=''):

    images = data.train.images
    labels = data.train.labels

    images = images.reshape((-1, 28, 28, 1))
    imgs = [x for i in range(10) for x in read_results(i, folderpath)[-1][0]]
    imgs = np.array(imgs)[:, :, :, None]

    lbls = np.empty((imgs.shape[0], 10))
    lbls.fill(1/10)

    images = np.concatenate((imgs, images))
    labels = np.concatenate((lbls, labels))

    images, labels = _shuffle_images_labels(images, labels)

    new_train = input_data.DataSet(images, labels)

    data.train = new_train
Esempio n. 9
0
def view_all_salient_features(model_options,
                              labels=None,
                              num_examples=None,
                              folderpath='',
                              data=None):

    imgs = []

    for label in range(10):

        if data is None:
            imgs_label, _ = read_results(label, folderpath)[-1]
        else:
            imgs_label = data[label]

        imgs_label = imgs_label[0:1, :, :]
        salient_features = get_salient_features(model_options,
                                                imgs_label,
                                                label,
                                                grad_sign='pos',
                                                num_keep=200,
                                                as_binary=True,
                                                mul_weights=False)

        imgs.append(salient_features)

    imgs = np.array(imgs)

    if labels:
        imgs = imgs[labels]
    if num_examples:
        imgs = imgs[:, :num_examples]

    shape = list(imgs.shape[:2])
    shape += [model_options['image_dim_size']] * 2

    graph_grid(imgs, shape=shape)
Esempio n. 10
0
                "MDA", "PWT", "DDC", "POT", "MST.UN", "AYA", "DRG.UN", "PHY.U",
                "VRX", "SLW"
        ]:
            continue
        stock_yield = get_3_month_yield(stock, date)
        # Filter out error in data (we suppose no yield of over x100)
        if not stock_yield > 100:
            yields.append(stock_yield)
    print(date, stocks, yields)
    return yields


def average_yields(stocks):
    total_yield = {}
    for date in stocks:
        yields = get_stocks_yields(stocks[date], date)
        average_yield = utils.list_average(yields)
        total_yield[date] = average_yield
    return total_yield


results = utils.read_results("./res.txt")
stocks_yield = average_yields(results)

index = yf.Ticker("^GSPTSE")
his = index.history(start="2009-12-01", end="2020-03-01")

index_yield = utils.df_to_yield_dic(his)

utils.plot_yields(stocks_yield, index_yield)
Esempio n. 11
0
        })
    return output

def to_plotly_json(results, years, metric, tags, fname):
    plotly_obj = plotlify_results(results, years, metric, tags)
    with codecs.open(fname, "w+", "utf-8") as f:
        json.dump(plotly_obj, f)
            
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="evaluation")
    parser.add_argument("files", nargs='+')
    parser.add_argument("-t", "--tags", default="most_freq")
    parser.add_argument("-o", "--output", required=True)
    parser.add_argument("-m", "--metric", required=True)
    args = parser.parse_args()
    results, years = read_results(args.files)
    if args.tags == "most_freq":
        tags = [u'MD', u'VAN', u'VBP', u'Q', u'C', u'VB', u'NS', u'VBD', u'FW', u'PRO$',
                u'NPR', u'ADV', u'.', u'ADJ', u',', u'CONJ', u'D', u'PRO', u'P', u'N']       
    else:
        tags = intersection(*[r[0] for r in results])
    metrics = {"f1": f1, "precision": precision, "recall": recall}
    to_plotly_json(results, years, metrics[args.metric], tags, args.output)
    

# from penn_data import pos_from_range
# counts = dict()
# test = (1400, 1500, 2000)
# test_counts = counts_per_tag(pos_from_range(*test))
# for start in range(1400, 1850, 50):
#     train = (start, start + 100, 10000)