Esempio n. 1
0
    def test_weight_minimization(self):
        base_network = reproducible_network_train()
        decay_network = reproducible_network_train(
            decay_rate=0.1, addons=[algorithms.WeightDecay])

        iter_networks = zip(base_network.layers, decay_network.layers)

        for net_layer, decay_layer in iter_networks:
            self.assertGreater(
                np.linalg.norm(net_layer.weight.get_value()),
                np.linalg.norm(decay_layer.weight.get_value()),
            )
Esempio n. 2
0
    def test_weight_minimization(self):
        base_network = reproducible_network_train()
        decay_network = reproducible_network_train(
            decay_rate=0.1,
            addons=[algorithms.WeightDecay]
        )

        iter_networks = zip(base_network.layers[1:-1],
                            decay_network.layers[1:-1])

        for net_layer, decay_layer in iter_networks:
            self.assertGreater(
                np.linalg.norm(net_layer.weight.get_value()),
                np.linalg.norm(decay_layer.weight.get_value()),
            )
Esempio n. 3
0
    def test_with_step_minimization_alg(self):
        default_step = 0.3
        net1 = reproducible_network_train(step=default_step)
        net2 = reproducible_network_train(
            step=default_step,
            decay_rate=0.25,
            zero_weight=10,
            addons=[algorithms.WeightElimination]
        )
        net3 = reproducible_network_train(
            step=default_step,
            decay_rate=0.25,
            zero_weight=10,
            addons=[algorithms.WeightElimination,
                    algorithms.StepDecay]
        )

        # Check that step is valid for each network
        StepCase = namedtuple('StepCase', 'network expected_step')
        step_test_cases = (
            StepCase(network=net1, expected_step=default_step),
            StepCase(network=net2, expected_step=default_step),
            StepCase(network=net3, expected_step=default_step / 6.),
        )

        for case in step_test_cases:
            step = case.network.variables.step
            self.assertAlmostEqual(step.get_value(), case.expected_step,
                                   places=5)

        # Compare weight norm between networks
        WeightNormCase = namedtuple('WeightNormCase',
                                    'with_smaller_norm with_bigger_norm')
        norm_test_cases = (
            WeightNormCase(with_smaller_norm=net2, with_bigger_norm=net1),
            WeightNormCase(with_smaller_norm=net3, with_bigger_norm=net1),
        )
        for case in norm_test_cases:
            network_layers = zip(case.with_smaller_norm.layers[1:-1],
                                 case.with_bigger_norm.layers[1:-1])
            for smaller_norm, bigger_norm in network_layers:
                weight_smaller_norm = smaller_norm.weight.get_value()
                weight_bigger_norm = bigger_norm.weight.get_value()
                self.assertGreater(
                    np.linalg.norm(weight_bigger_norm),
                    np.linalg.norm(weight_smaller_norm)
                )
Esempio n. 4
0
    def test_with_step_minimization_alg(self):
        default_step = 0.3
        net1 = reproducible_network_train(step=default_step)
        net2 = reproducible_network_train(
            step=default_step,
            decay_rate=0.25,
            zero_weight=10,
            addons=[algorithms.WeightElimination]
        )
        net3 = reproducible_network_train(
            step=default_step,
            decay_rate=0.25,
            zero_weight=10,
            addons=[algorithms.WeightElimination,
                    algorithms.StepDecay]
        )

        # Check that step is valid for each network
        StepCase = namedtuple('StepCase', 'network expected_step')
        step_test_cases = (
            StepCase(network=net1, expected_step=default_step),
            StepCase(network=net2, expected_step=default_step),
            StepCase(network=net3, expected_step=default_step / 6.),
        )

        for case in step_test_cases:
            step = case.network.variables.step
            self.assertAlmostEqual(step.get_value(), case.expected_step,
                                   places=2)

        # Compare weight norm between networks
        WeightNormCase = namedtuple('WeightNormCase',
                                    'with_smaller_norm with_bigger_norm')
        norm_test_cases = (
            WeightNormCase(with_smaller_norm=net2, with_bigger_norm=net1),
            WeightNormCase(with_smaller_norm=net3, with_bigger_norm=net1),
        )
        for case in norm_test_cases:
            network_layers = zip(case.with_smaller_norm.layers[1:-1],
                                 case.with_bigger_norm.layers[1:-1])
            for smaller_norm, bigger_norm in network_layers:
                weight_smaller_norm = smaller_norm.weight.get_value()
                weight_bigger_norm = bigger_norm.weight.get_value()
                self.assertGreater(
                    np.linalg.norm(weight_bigger_norm),
                    np.linalg.norm(weight_smaller_norm)
                )
Esempio n. 5
0
    def test_log_scale(self):
        original_image_name = format_image_name("log_scale.png")
        original_image = os.path.join(IMGDIR, original_image_name)

        with image_comparison(original_image) as fig:
            ax = fig.add_subplot(1, 1, 1)
            network = reproducible_network_train(step=0.3)
            network.plot_errors(logx=True, ax=ax, show=False)
Esempio n. 6
0
    def test_log_scale(self):
        original_image_name = format_image_name("log_scale.png")
        original_image = os.path.join(IMGDIR, original_image_name)

        with image_comparison(original_image) as fig:
            ax = fig.add_subplot(1, 1, 1)
            network = reproducible_network_train(step=0.3)
            plots.error_plot(network, logx=True, ax=ax, show=False)
Esempio n. 7
0
    def test_simple_plot(self):
        original_image_name = format_image_name("simple_plot.png")
        original_image = os.path.join(IMGDIR, original_image_name)

        with image_comparison(original_image) as fig:
            ax = fig.add_subplot(1, 1, 1)
            network = reproducible_network_train(step=0.3)
            plots.error_plot(network, ax=ax, show=False)
Esempio n. 8
0
    def test_simple_plot(self):
        original_image_name = format_image_name("simple_plot.png")
        original_image = os.path.join(IMGDIR, original_image_name)

        with image_comparison(original_image) as fig:
            ax = fig.add_subplot(1, 1, 1)
            network = reproducible_network_train(step=0.3)
            network.plot_errors(ax=ax, show=False)
Esempio n. 9
0
    def test_weight_minimization(self):
        base_network = reproducible_network_train()
        decay_network = reproducible_network_train(
            decay_rate=0.3,
            zero_weight=5,
            addons=[algorithms.WeightElimination])

        iter_networks = zip(
            base_network.layers[1:-1],
            decay_network.layers[1:-1],
        )

        for net_layer, decay_layer in iter_networks:
            self.assertGreater(
                np.linalg.norm(self.eval(net_layer.weight)),
                np.linalg.norm(self.eval(decay_layer.weight)),
            )
Esempio n. 10
0
    def test_with_step_minimization_alg(self):
        default_step = 0.3
        net1 = reproducible_network_train(step=default_step)
        net2 = reproducible_network_train(step=default_step,
                                          addons=[algorithms.WeightDecay])
        net3 = reproducible_network_train(step=default_step,
                                          addons=[
                                              algorithms.WeightDecay,
                                              algorithms.StepDecay,
                                          ])

        # Check that step is valid for each network
        StepCase = namedtuple('StepCase', 'network expected_step')
        step_test_cases = (
            StepCase(network=net1, expected_step=default_step),
            StepCase(network=net2, expected_step=default_step),
            StepCase(network=net3, expected_step=default_step / 6.),
        )

        for case_index, case in enumerate(step_test_cases, start=1):
            step = case.network.variables.step

            self.assertAlmostEqual(self.eval(step),
                                   case.expected_step,
                                   places=5,
                                   msg="Test case #{}".format(case_index))

        # Compare weight norm between networks
        WeightNormCase = namedtuple('WeightNormCase',
                                    'with_smaller_norm with_bigger_norm')

        norm_test_cases = (
            WeightNormCase(with_smaller_norm=net2, with_bigger_norm=net1),
            WeightNormCase(with_smaller_norm=net3, with_bigger_norm=net1),
        )
        for case in norm_test_cases:
            network_layers = zip(
                case.with_smaller_norm.layers[1:-1],
                case.with_bigger_norm.layers[1:-1],
            )
            for smaller_norm, bigger_norm in network_layers:
                weight_smaller_norm = self.eval(smaller_norm.weight)
                weight_bigger_norm = self.eval(bigger_norm.weight)
                self.assertGreater(np.linalg.norm(weight_bigger_norm),
                                   np.linalg.norm(weight_smaller_norm))
Esempio n. 11
0
    def test_error_plot_show_image(self):
        def mock_plt_show():
            pass

        # Test suppose not to fail
        real_plt_show = plt.show
        plt.show = mock_plt_show

        network = reproducible_network_train(step=0.3)
        plots.error_plot(network, show=True)

        plt.show = real_plt_show
Esempio n. 12
0
    def test_error_plot_show_image(self):
        def mock_plt_show():
            pass

        # Test suppose not to fail
        real_plt_show = plt.show
        plt.show = mock_plt_show

        network = reproducible_network_train(step=0.3)
        plots.error_plot(network, show=True)

        plt.show = real_plt_show