Esempio n. 1
0
 def __init__(self,
              prompt_id,
              use_char,
              out_dir,
              modelname,
              train_x,
              dev_x,
              test_x,
              train_c,
              dev_c,
              test_c,
              train_y,
              dev_y,
              test_y,
              train_context,
              dev_context,
              test_context,
              char_only=False):
     # self.dataset = dataset
     self.use_char = use_char
     self.char_only = char_only
     self.prompt_id = prompt_id
     self.train_x, self.dev_x, self.test_x = train_x, dev_x, test_x
     self.train_c, self.dev_c, self.test_c = train_c, dev_c, test_c
     self.train_y, self.dev_y, self.test_y = train_y, dev_y, test_y
     self.train_context, self.dev_context, self.test_context = train_context, dev_context, test_context
     self.train_y_org = rescale_tointscore(train_y, self.prompt_id)
     self.dev_y_org = rescale_tointscore(dev_y, self.prompt_id)
     self.test_y_org = rescale_tointscore(test_y, self.prompt_id)
     self.out_dir = out_dir
     self.modelname = modelname
     self.best_dev = [-1, -1, -1, -1]
     self.best_test = [-1, -1, -1, -1]
Esempio n. 2
0
    def evaluate(self, model, epoch, print_info=False):
        if self.use_char:
            if self.char_only:
                train_pred = model.predict(self.train_c, batch_size=32).squeeze()
                dev_pred = model.predict(self.dev_c, batch_size=32).squeeze()
                test_pred = model.predict(self.test_c, batch_size=32).squeeze()
            else:
                train_pred = model.predict([self.train_x, self.train_c], batch_size=32).squeeze()
                dev_pred = model.predict([self.dev_x, self.dev_c], batch_size=32).squeeze()
                test_pred = model.predict([self.test_x, self.test_c], batch_size=32).squeeze()
        else:
            train_pred = model.predict(self.train_x, batch_size=32).squeeze()
            dev_pred = model.predict(self.dev_x, batch_size=32).squeeze()
            test_pred = model.predict(self.test_x, batch_size=32).squeeze()

        # print test_pred

        train_pred_int = rescale_tointscore(train_pred, self.prompt_id)
        dev_pred_int = rescale_tointscore(dev_pred, self.prompt_id)
        test_pred_int = rescale_tointscore(test_pred, self.prompt_id)

        self.calc_correl(train_pred_int, dev_pred_int, test_pred_int)
        self.calc_kappa(train_pred_int, dev_pred_int, test_pred_int)
        self.calc_rmse(train_pred_int, dev_pred_int, test_pred_int)

        if self.dev_qwk > self.best_dev[0]:
            self.best_dev = [self.dev_qwk, self.dev_pr, self.dev_spr, self.dev_rmse]
            self.best_test = [self.test_qwk, self.test_pr, self.test_spr, self.test_rmse]
            self.best_dev_epoch = epoch
            model.save_weights(self.out_dir + '/' + self.modelname, overwrite=True)

        if print_info:
            self.print_info()
 def __init__(self, prompt_id, use_mask, out_dir, modelname, train_x, dev_x,
              test_x, train_y, dev_y, test_y):
     # self.dataset = dataset
     self.use_mask = use_mask
     self.prompt_id = prompt_id
     self.train_x, self.dev_x, self.test_x = train_x, dev_x, test_x
     #self.train_mask, self.dev_mask, self.test_mask = train_mask, dev_mask, test_mask
     self.train_y, self.dev_y, self.test_y = train_y, dev_y, test_y
     self.train_y_org = rescale_tointscore(train_y, self.prompt_id)
     self.dev_y_org = rescale_tointscore(dev_y, self.prompt_id)
     self.test_y_org = rescale_tointscore(test_y, self.prompt_id)
     self.out_dir = out_dir
     self.modelname = modelname
     self.best_dev = [-1, -1, -1, -1]
     self.best_test = [-1, -1, -1, -1]
Esempio n. 4
0
    def evaluate(self, model, epoch, print_info=False):

        # train_pred = model.predict({'word_input': self.train_x, 'word_input_d': self.train_d}, batch_size=32).squeeze()
        # dev_pred = model.predict({'word_input': self.dev_x, 'word_input_d': self.dev_d}, batch_size=32).squeeze()
        # test_pred = model.predict({'word_input': self.test_x,  'word_input_d': self.test_d}, batch_size=32).squeeze()

        # train_pred = model.predict({'word_input': self.train_x, 'p_input1': self.p_train[:, 0, :], 'p_input2': self.p_train[:, 1, :],
        # 'p_input3': self.p_train[:, 2, :], 'p_input4': self.p_train[:, 3, :]}, batch_size=32).squeeze()
        # dev_pred = model.predict({'word_input': self.dev_x, 'p_input1': self.p_dev[:, 0, :], 'p_input2': self.p_dev[:, 1, :],
        # 'p_input3': self.p_dev[:, 2, :], 'p_input4': self.p_dev[:, 3, :]}, batch_size=32).squeeze()
        # test_pred = model.predict({'word_input': self.test_x, 'p_input1': self.p_test[:, 0, :], 'p_input2': self.p_test[:, 1, :],
        # 'p_input3': self.p_test[:, 2, :], 'p_input4': self.p_test[:, 3, :]}, batch_size=32).squeeze()
        train_pred = model.predict(
            {
                'word_input': self.train_x,
                'p': self.p_train
            }, batch_size=32).squeeze()
        dev_pred = model.predict({
            'word_input': self.dev_x,
            'p': self.p_dev
        },
                                 batch_size=32).squeeze()
        test_pred = model.predict({
            'word_input': self.test_x,
            'p': self.p_test
        },
                                  batch_size=32).squeeze()

        train_pred_int = rescale_tointscore(train_pred, self.prompt_id)
        dev_pred_int = rescale_tointscore(dev_pred, self.prompt_id)
        test_pred_int = rescale_tointscore(test_pred, self.prompt_id)

        # self.calc_correl(train_pred_int, dev_pred_int, test_pred_int)
        self.calc_kappa(train_pred_int, dev_pred_int, test_pred_int)
        #self.calc_rmse(train_pred_int, dev_pred_int, test_pred_int)

        if self.dev_qwk > self.best_dev[0]:
            self.best_dev = [self.dev_qwk, 0, 0, 0]
            self.best_test = [self.test_qwk, 0, 0, 0]
            self.best_dev_epoch = epoch

        if print_info:
            self.print_info()
Esempio n. 5
0
    def __init__(self, prompt_id, fold, train_x, dev_x, test_x, train_y, dev_y,
                 test_y, train_d, dev_d, test_d, p_train, p_dev, p_test):
        # self.dataset = dataset

        self.fold = fold
        self.prompt_id = prompt_id
        self.train_x, self.dev_x, self.test_x = train_x, dev_x, test_x
        self.train_y, self.dev_y, self.test_y = train_y, dev_y, test_y
        self.train_d = train_d
        self.dev_d = dev_d
        self.test_d = test_d
        self.train_y_org = rescale_tointscore(train_y, self.prompt_id)
        self.dev_y_org = rescale_tointscore(dev_y, self.prompt_id)
        self.test_y_org = rescale_tointscore(test_y, self.prompt_id)

        self.p_train = p_train
        self.p_dev = p_dev
        self.p_test = p_test
        self.best_dev = [-1, -1, -1, -1]
        self.best_test = [-1, -1, -1, -1]