def run(name, params_dict, mu=0.0): simulation_parameters = get_implicit_lasso_simulation(**params_dict) # Add mu attribute to simulation_parameters. setattr(simulation_parameters, 'mu', mu) # Add a correlation matrix if mu is not 0.0. if mu != 0.0: simulation_parameters.covariates_kwargs_dict['covariance_matrix'] = \ mu * np.ones((d, d)) + (1.0 - mu) * np.identity(d) start = time.time() results = core.run_in_parallel( runs_per_device, processes_per_device, simulation_parameters, pytorch_configs) # Do not save the covariance matrix. simulation_parameters.covariates_kwargs_dict = {} utils.save_simulation_output( simulation_name, results, simulation_parameters) end = time.time() print("Execution time for id: ", run_id, ":", end - start, "seconds.")
def run(name, params_dict): simulation_parameters = get_implicit_lasso_simulation(**params_dict) start = time.time() results = core.run_in_parallel(runs_per_device, processes_per_device, simulation_parameters, pytorch_configs) utils.save_simulation_output(simulation_name, results, simulation_parameters) end = time.time() print("Execution time for id: ", run_id, ":", end - start, "seconds.")
def run(name, params_dict, paths_simulation=False): simulation_parameters = get_implicit_lasso_simulation(**params_dict) start = time.time() if paths_simulation: # This is the last simulation, the one used for plotting gd and # lasso paths. results = core.run_in_parallel( 1, 1, simulation_parameters, [pytorch_configs[0]]) else: results = core.run_in_parallel( runs_per_device, processes_per_device, simulation_parameters, pytorch_configs) utils.save_simulation_output( simulation_name, results, simulation_parameters) end = time.time() print("Execution time for id: ", run_id, ":", end - start, "seconds.")
simulation_name = output_dir + "alphas/run_" + str(run_id) simulation_parameters = get_implicit_lasso_simulation( alpha=alpha, observe_parameters=0, noise_std=noise_std, observers_frequency=10, run_glmnet=0, store_glmnet_path=0, **default_params) # Start our simulations. start = time.time() results = core.run_in_parallel(runs_per_device, processes_per_device, simulation_parameters, pytorch_configs) utils.save_simulation_output(simulation_name, results, simulation_parameters) end = time.time() print("Execution time for id: ", run_id, ":", end - start, "seconds.") run_id += 1 # Now we perform simulatinos for saving the parameter paths. alphas = 10.0**(np.array([-3.0, -12.0])) run_id = 0 print("Starting simulations for saving parameter paths") for alpha in alphas: for noise_std in noise_stds: simulation_name = output_dir + "paths/run_" + str(run_id) simulation_parameters = get_implicit_lasso_simulation( alpha=alpha, noise_std=noise_std,