def main(): args = utils.setup_parser(codes.get_code_names(), models.keys(), utils.decoder_names).parse_args() log_level = logging.DEBUG if args.debug else logging.INFO if args.console: utils.setup_console_logger(log_level) else: utils.setup_file_logger(args.data_dir, 'test', log_level) test(args)
def main(): args = setup_parser() args.final_eval = False if os.path.exists(args.output_dir) and os.listdir( args.output_dir ) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup CUDA, GPU & distributed training device = torch.device( "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() args.device = device # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels(args.data_dir) num_labels = len(label_list) args.num_labels = num_labels # Load pretrained model and tokenizer args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case) model = model_class.from_pretrained(args.model_name_or_path, config=config) model.to(args.device) # logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train: # Create output directory if needed if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) model_to_save = model.module if hasattr(model, 'module') else model model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) model.to(args.device) if args.n_gpu > 1: model = DataParallelModel(model) # Evaluation results = {} if args.do_eval: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("pytorch_transformers.modeling_utils").setLevel( logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split( '-')[-1] if len(checkpoints) > 1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) if args.n_gpu > 1: model = DataParallelModel(model) args.final_eval = True result = evaluate(args, model, tokenizer, prefix=global_step) result = dict( (k + '_{}'.format(global_step), v) for k, v in result.items()) results.update(result) if args.save_embeddings: save_embeddings(args, model, tokenizer) return results
import math from tqdm import tqdm import torch import torch.optim as optim import data from model import RNNModel from utils import process_data, build_unigram_noise, setup_parser, setup_logger from generic_model import GenModel from index_gru import IndexGRU from index_linear import IndexLinear parser = setup_parser() args = parser.parse_args() logger = setup_logger('pt-nce-%s' % args.save) logger.info(args) # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: logger.warning('You have a CUDA device, so you should probably run with --cuda') else: torch.cuda.manual_seed(args.seed) ################################################################# # Load data #################################################################