Esempio n. 1
0
 def __init__(self,
              in_channels,
              out_channels,
              mesh_file,
              stride=1,
              bias=True):
     assert stride in [1, 2]
     super(_MeshConv, self).__init__()
     self.in_channels = in_channels
     self.out_channels = out_channels
     if bias:
         self.bias = Parameter(torch.Tensor(out_channels))
     else:
         self.register_parameter('bias', None)
     self.ncoeff = 4
     self.coeffs = Parameter(
         torch.Tensor(out_channels, in_channels, self.ncoeff))
     self.set_coeffs()
     # load mesh file
     pkl = pickle.load(open(mesh_file, "rb"))
     self.pkl = pkl
     self.nv = self.pkl['V'].shape[0]
     G = sparse2tensor(pkl['G'])  # gradient matrix V->F, 3#F x #V
     NS = torch.tensor(
         pkl['NS'], dtype=torch.float32)  # north-south vector field, #F x 3
     EW = torch.tensor(
         pkl['EW'], dtype=torch.float32)  # east-west vector field, #F x 3
     self.register_buffer("G", G)
     self.register_buffer("NS", NS)
     self.register_buffer("EW", EW)
Esempio n. 2
0
 def __init__(self,
              in_channels,
              out_channels,
              mesh_file,
              stride=2,
              bias=True):
     assert (stride == 2)
     super(MeshConv_transpose, self).__init__(in_channels, out_channels,
                                              mesh_file, stride, bias)
     pkl = self.pkl
     self.nv_prev = self.pkl['nv_prev']
     self.nv_pad = self.nv - self.nv_prev
     L = sparse2tensor(pkl['L'].tocoo())  # laplacian matrix V->V
     F2V = sparse2tensor(pkl['F2V'].tocoo())  # F->V, #V x #F
     self.register_buffer("L", L)
     self.register_buffer("F2V", F2V)
Esempio n. 3
0
 def __init__(self,
              in_channels,
              out_channels,
              mesh_file,
              stride=1,
              bias=True):
     super(MeshConv, self).__init__(in_channels, out_channels, mesh_file,
                                    stride, bias)
     pkl = self.pkl
     if stride == 2:
         self.nv_prev = pkl['nv_prev']
         L = sparse2tensor(pkl['L'].tocsr()
                           [:self.nv_prev].tocoo())  # laplacian matrix V->V
         F2V = sparse2tensor(
             pkl['F2V'].tocsr()[:self.nv_prev].tocoo())  # F->V, #V x #F
     else:  # stride == 1
         self.nv_prev = pkl['V'].shape[0]
         L = sparse2tensor(pkl['L'].tocoo())
         F2V = sparse2tensor(pkl['F2V'].tocoo())
     self.register_buffer("L", L)
     self.register_buffer("F2V", F2V)