def explore_self_play_reverse(self, tMAX, tolerance, set_probability=0.5): tA = 0 tB = 0 solved = False seed = random.randint(0, 2**32 - 1) np.random.seed(seed) """ Random sampling of finish zone position """ finish_zone = np.random.uniform(-1, 1, (1, 2)) """ Random sampling of agents starting pos inside finish_zone""" init_pos = np.tile(finish_zone, (self.env.n_agents, 1)) + random.uniform( -0.3, 0.3, (self.env.n_agents, 2)) subs_teacher = self.get_teachers_subpolicies() subs_learners = self.get_learners_subpolicies() s = self.env.reset(agents_positions=init_pos, finish_zone_position=finish_zone) phase = 0 landmarks = np.random.uniform(-1, 1, (self.env.n_agents, 2)) landmarks_flags = np.ones(self.env.n_agents) s = utils.state_to_teacher_state(s, landmarks, landmarks_flags) s = utils.add_phase_to_state(s, phase) while True: pass
def self_play_repeat(self, max_timestep_alice, max_timestep_bob, episode, tolerance, stop_update, set_update, alternate, train_teacher): tA = 0 tB = 0 tSet = 0 seed = random.randint(0, 2**32 - 1) np.random.seed(seed) phase = 0 s = self.env.reset() landmarks = np.random.uniform(-1, 1, (self.env.n_agents, 2)) landmarks_flags = np.ones(self.env.n_agents) s = utils.state_to_teacher_state(s, landmarks, landmarks_flags) s = utils.add_phase_to_state(s, phase) s_init = copy.deepcopy(s) subs_learner = self.get_learners_subpolicies() subs_teacher = self.get_teachers_subpolicies() teacher_state = {} learner_state = {} hidden_actor = None hidden_critic = None while True: tA = tA + 1 input = np.hstack((np.array(s_init), np.array(s))) input_t = torch.Tensor(input) actions_detached = self.teachers.act(input_t, subs_teacher) s_t, r, done, i = self.env.step(copy.deepcopy(actions_detached)) s_t = utils.state_to_teacher_state(s_t, landmarks, landmarks_flags) s_t = utils.add_phase_to_state(s_t, phase) """ ALWAYS REQUEST STOP CONTROLLER FIRST WITH CURRENT ACTION MASK """ mask = self.get_mask(phase) action, log_prob, value, hidden_actor, hidden_critic = self.stop.act( input_t.flatten(), hidden_actor=hidden_actor, hidden_critic=hidden_critic, mask=torch.Tensor(mask)) action_item = action.item() self.stop.memory.current_seq.append(input.flatten()) self.stop.memory.log_prob.append(log_prob) self.stop.memory.actions.append(action) self.stop.memory.values.append(value) self.stop.memory.masks.append(mask) """ IF ACTION IS 0 : JUST LET THE CONTROLLERS MOVE ON NEXT STEP OTHERWISE : HANDLE ACTION AND GENERATE SCENARIO ACCORDINGLY double check on bases_set should not be necessary thanks to action mask, but we never know... second check on tA ensures a fully defined environment when control is passed to BOB """ if action_item == 1 and phase == 0: landmarks = np.array([ copy.deepcopy(agent.get_pos()) for agent in self.env.agents ]) landmarks_flags = np.zeros(landmarks_flags.shape) tSet = tA phase = 1 if action_item == 2 or tA >= max_timestep_alice: finish_zone, finish_zone_radius = utils.compute_finish_zone( np.array([ copy.deepcopy(agent.get_pos()) for agent in self.env.agents ])) teacher_state['s'] = copy.deepcopy( np.hstack((np.array(s_init), np.array(s)))) teacher_state['s_t'] = copy.deepcopy( np.hstack((np.array(s_init), np.array(s_t)))) teacher_state['a'] = copy.deepcopy(actions_detached) teacher_state['d'] = True break self.stop.memory.rewards.append(0) self.stop.memory.dones.append(False) obs = np.hstack((np.array(s_init), np.array(s))) obs_t = np.hstack((np.array(s_init), np.array(s_t))) self.teachers.push_sample(obs, actions_detached, [0] * self.env.n, False, obs_t, subs_teacher) self.teachers.train(subs_learner) s = s_t np.random.seed(seed) s = self.env.reset(landmark_positions=landmarks, landmark_flags=landmarks_flags, finish_zone_position=finish_zone, finish_zone_radius=finish_zone_radius) while True: tB = tB + 1 actions_detached = self.learners.act(s, subs_learner) s_t, _, solved, _ = self.env.step(copy.deepcopy(actions_detached)) if tA + tB >= max_timestep_bob or solved: learner_state['s'] = copy.deepcopy(s) learner_state['s_t'] = copy.deepcopy(s_t) learner_state['a'] = copy.deepcopy(actions_detached) learner_state['d'] = solved break self.learners.push_sample(s, actions_detached, [0] * self.env.n, False, s_t, subs_learner) self.learners.train(subs_teacher) s = s_t if not solved: tB = max_timestep_bob - tA R_A = [self.self_play_gamma * max(0, tB - tA)] * self.env.n R_B = [self.self_play_gamma * -1 * tB] * self.env.n self.teachers.push_sample(teacher_state['s'], teacher_state['a'], R_A, teacher_state['d'], teacher_state['s_t'], subs_teacher) self.learners.push_sample(learner_state['s'], learner_state['a'], R_B, learner_state['d'], learner_state['s_t'], subs_learner) self.stop.memory.rewards.append(R_A[0]) self.stop.memory.dones.append(True) self.stop.memory.new_seq() nb_bases = np.array([ landmark.get_activated() for landmark in self.env.landmarks ]).astype(int).sum() self.writer.add_scalars( "Self play BOB bases activated {}".format(self.run_id), {'Bases activated': nb_bases}, episode) self.writer.add_scalars( "Self play episode time {}".format(self.run_id), { 'ALICE TIME': tA, 'BOB TIME': tB, 'SET TIME': tSet }, episode) self.writer.add_scalars("Self play rewards {}".format(self.run_id), { "ALICE REWARD": R_A[0], 'BOB REWARD': R_B[0] }, episode) self.writer.add_scalars( "Self play finish zone radius {}".format(self.run_id), {"FINISH ZONE RADIUS": finish_zone_radius}, episode) print("TA : {} TB : {} TS : {} RA : {} RB {} {}".format( tA, tB, tSet, R_A, R_B, "SOLVED" if solved else "")) if episode % stop_update == 0: self.stop.update() return tA, tB
def explore_self_play_repeat(self, tMAX, tolerance, set_probability=0.5, stop_probability=0.5): tA = 0 tB = 0 solved = False seed = random.randint(0, 2**32 - 1) np.random.seed(seed) phase = 0 s = self.env.reset() landmarks = np.random.uniform(-1, 1, (self.env.n_agents, 2)) landmarks_flags = np.ones(self.env.n_agents) s = utils.state_to_teacher_state(s, landmarks, landmarks_flags) s = utils.add_phase_to_state(s, phase) s_init = copy.deepcopy(s) subs_learner = self.get_learners_subpolicies() subs_teacher = self.get_teachers_subpolicies() teacher_state = {} learner_state = {} stop_flag = False set_flag = False while True: tA = tA + 1 if not set_flag: set_flag = np.random.rand() < set_probability if tA >= tMAX: set_flag = True if set_flag: landmarks = np.array([ copy.deepcopy(agent.get_pos()) for agent in self.env.agents ]) landmarks_flags = np.zeros(landmarks_flags.shape) phase = 1 actions_detached = self.teachers.random_act() s_t, r, done, i = self.env.step(copy.deepcopy(actions_detached)) s_t = utils.state_to_teacher_state(s_t, landmarks, landmarks_flags) s_t = utils.add_phase_to_state(s_t, phase) stop_flag = np.random.rand() < stop_probability if tA >= tMAX: stop_flag = True if stop_flag or tA >= tMAX: finish_zone, finish_zone_radius = utils.compute_finish_zone( np.array([ copy.deepcopy(agent.get_pos()) for agent in self.env.agents ])) teacher_state['s'] = copy.deepcopy(s) teacher_state['s_t'] = copy.deepcopy(s_t) teacher_state['a'] = copy.deepcopy(actions_detached) teacher_state['d'] = True s = s_t break obs = np.hstack((np.array(s_init), np.array(s))) obs_t = np.hstack((np.array(s_init), np.array(s_t))) self.teachers.push_sample(obs, actions_detached, [0] * self.env.n, False, obs_t, subs_teacher) s = s_t s_final = copy.deepcopy(s_t) np.random.seed(seed) s = self.env.reset(landmark_positions=landmarks, finish_zone_position=finish_zone, finish_zone_radius=finish_zone_radius) save_s = None save_s_t = None while True: tB = tB + 1 actions_detached = self.learners.random_act() s_t, _, solved, _ = self.env.step(copy.deepcopy(actions_detached)) if tA + tB >= tMAX or solved: learner_state['s'] = copy.deepcopy(s) learner_state['s_t'] = copy.deepcopy(s_t) learner_state['a'] = copy.deepcopy(actions_detached) learner_state['d'] = solved break reward = 0 self.learners.push_sample(s, actions_detached, [0] * self.env.n, solved, s_t, subs_learner) s = s_t if solved is False: tB = tMAX - tA R_A = [self.self_play_gamma * max(0, tB - tA)] * self.env.n R_B = [self.self_play_gamma * -1 * tB] * self.env.n obs = np.hstack((np.array(s_init), np.array(teacher_state['s']))) obs_t = np.hstack((np.array(s_init), np.array(teacher_state['s_t']))) self.teachers.push_sample(obs, teacher_state['a'], R_A, teacher_state['d'], obs_t, subs_teacher) self.learners.push_sample(learner_state['s'], learner_state['a'], R_B, solved, learner_state['s_t'], subs_learner)
def self_play_repeat(self, max_timestep_alice, max_timestep_bob, episode, tolerance, stop_update, set_update, alternate, train_teacher): tA = 0 tB = 0 tSet = 0 seed = random.randint(0, 2**32 - 1) np.random.seed(seed) phase = 0 s = self.env.reset() landmarks = np.random.uniform(-1, 1, (self.env.n_agents, 2)) landmarks_flags = np.ones(self.env.n_agents) """ One hot encode the learner that should succeed """ target_learner = np.zeros(self.n_learners) target_learner[np.random.randint(self.n_learners)] = 1 s = utils.state_to_teacher_state(s, landmarks, landmarks_flags, target_learner) s = utils.add_phase_to_state(s, phase) s_init = copy.deepcopy(s) subs_learner = [ self.get_learners_subpolicies() for _ in range(self.n_learners) ] subs_teacher = self.get_teachers_subpolicies() teacher_state = {} learner_state = [{} for _ in range(self.n_learners)] while True: tA = tA + 1 input = np.hstack((np.array(s_init), np.array(s))) input_t = torch.Tensor(input) actions_detached = self.teachers.act(input_t, subs_teacher) s_t, r, done, i = self.env.step(copy.deepcopy(actions_detached)) s_t = utils.state_to_teacher_state(s_t, landmarks, landmarks_flags, target_learner) s_t = utils.add_phase_to_state(s_t, phase) """ ALWAYS REQUEST STOP CONTROLLER FIRST WITH CURRENT ACTION MASK """ mask = self.get_mask(phase) action, log_prob, value = self.stop.act(input_t.flatten(), torch.Tensor(mask)) action_item = action.item() self.stop.memory.states.append(input.flatten()) self.stop.memory.log_prob.append(log_prob) self.stop.memory.actions.append(action) self.stop.memory.values.append(value) self.stop.memory.masks.append(mask) """ IF ACTION IS 0 : JUST LET THE CONTROLLERS MOVE ON NEXT STEP OTHERWISE : HANDLE ACTION AND GENERATE SCENARIO ACCORDINGLY double check on bases_set should not be necessary thanks to action mask, but we never know... second check on tA ensures a fully defined environment when control is passed to BOB """ if action_item == 1 and phase == 0: landmarks = np.array([ copy.deepcopy(agent.get_pos()) for agent in self.env.agents ]) landmarks_flags = np.zeros(landmarks_flags.shape) tSet = tA phase = 1 if action_item == 2 or tA >= max_timestep_alice: finish_zone, finish_zone_radius = utils.compute_finish_zone( np.array([ copy.deepcopy(agent.get_pos()) for agent in self.env.agents ])) teacher_state['s'] = copy.deepcopy( np.hstack((np.array(s_init), np.array(s)))) teacher_state['s_t'] = copy.deepcopy( np.hstack((np.array(s_init), np.array(s_t)))) teacher_state['a'] = copy.deepcopy(actions_detached) teacher_state['d'] = True break self.stop.memory.rewards.append(0) self.stop.memory.dones.append(False) obs = np.hstack((np.array(s_init), np.array(s))) obs_t = np.hstack((np.array(s_init), np.array(s_t))) self.teachers.push_sample(obs, actions_detached, [0] * self.env.n, False, obs_t, subs_teacher) s = s_t learners_results = np.zeros(self.n_learners) learners_steps = np.zeros(self.n_learners).astype(int) for learner in range(self.n_learners): np.random.seed(seed) s = self.env.reset(landmark_positions=landmarks, landmark_flags=landmarks_flags, finish_zone_position=finish_zone, finish_zone_radius=finish_zone_radius) while True: learners_steps[learner] += 1 actions_detached = self.learners[learner].act( s, subs_learner[learner]) s_t, _, solved, _ = self.env.step( copy.deepcopy(actions_detached)) if learners_steps[learner] >= max_timestep_bob or solved: learner_state[learner]['s'] = copy.deepcopy(s) learner_state[learner]['s_t'] = copy.deepcopy(s_t) learner_state[learner]['a'] = copy.deepcopy( actions_detached) learner_state[learner]['d'] = solved break self.learners[learner].push_sample(s, actions_detached, [0] * self.env.n, False, s_t, subs_learner[learner]) s = s_t learners_results[learner] = 1 if solved else 0 R_A = [ 2 * learners_results[np.argmax(target_learner)] - np.sum(learners_results) ] * self.env.n self.teachers.push_sample(teacher_state['s'], teacher_state['a'], R_A, teacher_state['d'], teacher_state['s_t'], subs_teacher) for learner in range(self.n_learners): self.learners[learner].push_sample( learner_state[learner]['s'], learner_state[learner]['a'], [learners_results[learner]] * self.env.n, bool(learners_results[learner]), learner_state[learner]['s_t'], subs_learner[learner]) self.stop.memory.rewards.append(R_A[0]) self.stop.memory.dones.append(True) nb_bases = np.array([ landmark.get_activated() for landmark in self.env.landmarks ]).astype(int).sum() self.writer.add_scalars( "Self play BOB bases activated {}".format(self.run_id), {'Bases activated': nb_bases}, episode) self.writer.add_scalars( "Self play episode time {}".format(self.run_id), { 'ALICE TIME': tA, 'SET TIME': tSet }, episode) self.writer.add_scalars( "Self play episode time {}".format(self.run_id), { 'BOB {} TIME'.format(i): learners_steps[i] for i in range(self.n_learners) }) self.writer.add_scalars("Self play rewards {}".format(self.run_id), {"ALICE REWARD": R_A[0]}, episode) self.writer.add_scalars( "Self play rewards {}".format(self.run_id), { "BOB REWARD {}".format(i): learners_results[i] for i in range(self.n_learners) }, episode) self.writer.add_scalars( "Self play finish zone radius {}".format(self.run_id), {"FINISH ZONE RADIUS": finish_zone_radius}, episode) print("TA : {} TB : {} TS : {} RA : {} RB {}".format( tA, learners_steps, tSet, R_A, learners_results)) if alternate is False or train_teacher is True: for _ in range(tA): self.teachers.train(subs_teacher) if episode % stop_update == 0: #if len(self.stop.memory) >= self.stop.update_step: self.stop.update() if alternate is False or train_teacher is False: for learner in range(self.n_learners): for _ in range(learners_steps[learner]): self.learners[learner].train(subs_learner[learner]) return tA, tB
def explore_self_play_repeat(self, max_timestep_alice, max_timestep_bob, set_probability=0.5, stop_probability=0.5): tA = 0 tB = 0 solved = False seed = random.randint(0, 2**32 - 1) np.random.seed(seed) phase = 0 s = self.env.reset() landmarks = np.random.uniform(-1, 1, (self.env.n_agents, 2)) landmarks_flags = np.ones(self.env.n_agents) """ One hot encode the learner that should succeed """ target_learner = np.zeros(self.n_learners) target_learner[np.random.randint(self.n_learners)] = 1 s = utils.state_to_teacher_state(s, landmarks, landmarks_flags, target_learner) s = utils.add_phase_to_state(s, phase) s_init = copy.deepcopy(s) subs_learner = [ self.get_learners_subpolicies() for _ in range(self.n_learners) ] subs_teacher = self.get_teachers_subpolicies() teacher_state = {} learner_state = [{} for _ in range(self.n_learners)] stop_flag = False set_flag = False while True: tA = tA + 1 if not set_flag: set_flag = np.random.rand() < set_probability if tA >= max_timestep_alice: set_flag = True if set_flag: landmarks = np.array([ copy.deepcopy(agent.get_pos()) for agent in self.env.agents ]) landmarks_flags = np.zeros(landmarks_flags.shape) phase = 1 actions_detached = self.teachers.random_act() s_t, r, done, i = self.env.step(copy.deepcopy(actions_detached)) s_t = utils.state_to_teacher_state(s_t, landmarks, landmarks_flags, target_learner) s_t = utils.add_phase_to_state(s_t, phase) stop_flag = np.random.rand() < stop_probability if tA >= max_timestep_alice: stop_flag = True if stop_flag or tA >= max_timestep_alice: finish_zone, finish_zone_radius = utils.compute_finish_zone( np.array([ copy.deepcopy(agent.get_pos()) for agent in self.env.agents ])) teacher_state['s'] = copy.deepcopy(s) teacher_state['s_t'] = copy.deepcopy(s_t) teacher_state['a'] = copy.deepcopy(actions_detached) teacher_state['d'] = True s = s_t break obs = np.hstack((np.array(s_init), np.array(s))) obs_t = np.hstack((np.array(s_init), np.array(s_t))) self.teachers.push_sample(obs, actions_detached, [0] * self.env.n, False, obs_t, subs_teacher) s = s_t learners_results = np.zeros(self.n_learners) learners_step = np.zeros(self.n_learners) for learner in range(self.n_learners): np.random.seed(seed) s = self.env.reset(landmark_positions=landmarks, finish_zone_position=finish_zone, finish_zone_radius=finish_zone_radius) while True: learners_step[learner] += 1 actions_detached = self.learners[learner].random_act() s_t, _, solved, _ = self.env.step( copy.deepcopy(actions_detached)) if learners_step[learner] >= max_timestep_bob or solved: learner_state[learner]['s'] = copy.deepcopy(s) learner_state[learner]['s_t'] = copy.deepcopy(s_t) learner_state[learner]['a'] = copy.deepcopy( actions_detached) learner_state[learner]['d'] = solved break reward = 0 self.learners[learner].push_sample(s, actions_detached, [0] * self.env.n, solved, s_t, subs_learner[learner]) s = s_t learners_results[learner] = 1 if solved else 0 obs = np.hstack((np.array(s_init), np.array(teacher_state['s']))) obs_t = np.hstack((np.array(s_init), np.array(teacher_state['s_t']))) R_A = [ 2 * learners_results[np.argmax(target_learner)] - np.sum(learners_results) ] * self.env.n self.teachers.push_sample(obs, teacher_state['a'], R_A, teacher_state['d'], obs_t, subs_teacher) for learner in range(self.n_learners): self.learners[learner].push_sample( learner_state[learner]['s'], learner_state[learner]['a'], [learners_results[learner]] * self.env.n, solved, learner_state[learner]['s_t'], subs_learner[learner])