Esempio n. 1
0
def main():
    log_files = ['/hnn/examples/knees_sagittal_fold1/knees_sagittal_fold1.log']

    train_iteration = []
    train_loss = []
    base_test_iter = 0
    base_train_iter = 0

    for log_file in log_files:
        with open(log_file, 'rb') as f:
            if len(train_iteration) != 0:
                base_train_iter = train_iteration[-1]
                base_test_iter = test_iteration[-1]

            line_count = 0
            for line in f:
                line_count += 1
                #print('{}: {}'.format(line_count, line))
                # TRAIN NET
                if strstr(line, 'Iteration') and strstr(line, 'lr'):
                    matched = match_iteration(line)
                    train_iteration.append(
                        int(matched.group(1)) + base_train_iter)

                elif strstr(line, ', loss'):
                    matched = match_loss(line)
                    print(matched.group(1))
                    train_loss.append(float(matched.group(1)))

    log_base = os.path.splitext(os.path.basename(log_files[0]))[0]

    result = {'TRAIN': (train_iteration, train_loss)}
    pickle.dump(result, open(log_base + '.pkl', "wb"))

    print('read {} lines'.format(line_count))
    print("TRAIN", train_iteration, train_loss, np.shape(train_iteration),
          np.shape(train_loss))

    print("Best TRAIN performance at:")
    min_train_loss = np.min(train_loss)
    best_idx = np.where(train_loss == min_train_loss)[0]
    print(best_idx)
    print("{}: iteration {}, loss {}".format(log_base,
                                             train_iteration[best_idx],
                                             min_train_loss))

    # loss
    #plt.plot(train_iteration[0:len(train_loss)], train_loss[0:len(train_loss)], 'k', label='Train loss')
    plt.semilogy(train_iteration[0:len(train_loss)],
                 train_loss[0:len(train_loss)],
                 'k',
                 label='Train loss')
    plt.legend()
    plt.ylabel('Loss')
    plt.xlabel('Number of iterations')
    plt.grid(True)
    plt.show()
    plt.savefig(log_base + '.png')
def main():
    log_files = process_arguments(sys.argv)

    train_iteration = []
    train_loss = []
    test_iteration = []
    test_loss = []
    test_accuracy = []
    base_test_iter = 0
    base_train_iter = 0

    for log_file in log_files:
        with open(log_file, 'rb') as f:
            if len(train_iteration) != 0:
                base_train_iter = train_iteration[-1]
                base_test_iter = test_iteration[-1]

            for line in f:
                # TRAIN NET
                if strstr(line, 'Iteration') and strstr(line, 'lr'):
                    matched = match_iteration(line)
                    train_iteration.append(
                        int(matched.group(1)) + base_train_iter)

                elif strstr(line, 'Train net output'):
                    matched = match_loss(line)
                    train_loss.append(float(matched.group(1)))

                # TEST NET
                elif strstr(line, 'Testing net'):
                    matched = match_iteration(line)
                    test_iteration.append(
                        int(matched.group(1)) + base_test_iter)

                elif strstr(line, 'Test net output'):
                    matched = match_loss(line)
                    if matched:
                        test_loss.append(float(matched.group(1)))
                    else:
                        matched = match_accuracy(line)
                        test_accuracy.append(float(matched.group(1)))

    print("TRAIN", train_iteration, train_loss)
    print("TEST", test_iteration, test_loss)
    print("ACCURACY", test_iteration, test_accuracy)

    # loss
    plt.plot(train_iteration, train_loss, 'k', label='Train loss')
    plt.plot(test_iteration, test_loss, 'r', label='Test loss')
    plt.legend()
    plt.ylabel('Loss')
    plt.xlabel('Number of iterations')
    plt.savefig('loss.png')
def main():
  log_files = process_arguments(sys.argv)

  train_iteration = []
  train_loss      = []
  test_iteration  = []
  test_loss       = []
  test_accuracy   = []
  base_test_iter  = 0
  base_train_iter = 0

  for log_file in log_files:
    with open(log_file, 'rb') as f:
      if len(train_iteration) != 0:
        base_train_iter = train_iteration[-1]
        base_test_iter = test_iteration[-1]

      for line in f:
        # TRAIN NET
        if strstr(line, 'Iteration') and strstr(line, 'lr'):
          matched = match_iteration(line)
          train_iteration.append(int(matched.group(1))+base_train_iter)

        elif strstr(line, 'Train net output'):
          matched = match_loss(line)
          train_loss.append(float(matched.group(1)))

        # TEST NET
        elif strstr(line, 'Testing net'):
          matched = match_iteration(line)
          test_iteration.append(int(matched.group(1))+base_test_iter)

        elif strstr(line, 'Test net output'):
          matched = match_loss(line)
          if matched:
            test_loss.append(float(matched.group(1)))
          else:
            matched = match_accuracy(line)
            test_accuracy.append(float(matched.group(1)))

  print("TRAIN", train_iteration, train_loss)
  print("TEST", test_iteration, test_loss)
  print("ACCURACY", test_iteration, test_accuracy)

  # loss
  plt.plot(train_iteration, train_loss, 'k', label='Train loss')
  plt.plot(test_iteration, test_loss, 'r', label='Test loss')
  plt.legend()
  plt.ylabel('Loss')
  plt.xlabel('Number of iterations')
  plt.savefig('loss.png')
Esempio n. 4
0
def main():
  log_file = process_arguments(sys.argv)

  train_iteration = []
  train_loss      = []
  test_iteration  = []
  test_loss       = []

  with open(log_file, 'rb') as f:
    for line in f:

      # TRAIN NET
      if strstr(line, 'Iteration') and strstr(line, 'lr'):
        matched = match_iteration(line)
        train_iteration.append(int(matched.group(1)))

      elif strstr(line, 'Train net output'):
        matched = match_loss(line)
        train_loss.append(float(matched.group(1)))

      # TEST NET
      elif strstr(line, 'Testing net'):
        matched = match_iteration(line)
        test_iteration.append(int(matched.group(1)))

      elif strstr(line, 'Test net output'):
        matched = match_loss(line)
        test_loss.append(float(matched.group(1)))


  print("TRAIN", train_iteration, train_loss)
  print("TEST", test_iteration, test_loss)

  plt.plot(train_iteration, train_loss, 'k')
  plt.plot(test_iteration, test_loss, 'r')
  plt.ylabel('loss')
  plt.xlabel('number of iterations')

  plt.savefig('loss.png')
Esempio n. 5
0
def main():
    log_files = process_arguments(sys.argv)

    train_iteration = []
    train_loss = []
    test_iteration = []
    test_loss = []
    test_accuracy = []

    pixel_accuracy = []
    mean_accuracy = []
    mean_IU = []
    frequency_weighted_IU = []

    base_test_iter = 0
    base_train_iter = 0

    for log_file in log_files:
        with open(log_file, 'rb') as f:
            if len(train_iteration) != 0:
                base_train_iter = train_iteration[-1]
                base_test_iter = test_iteration[-1]

            for line in f:
                # TRAIN NET
                if strstr(line, 'Iteration') and strstr(line, 'lr'):
                    matched = match_iteration(line)
                    train_iteration.append(
                        int(matched.group(1)) + base_train_iter)
                elif strstr(line, 'Iteration') and strstr(line, 'loss'):
                    matched = match_loss(line)
                    train_loss.append(float(matched.group(1)))

                # TEST NET
                elif strstr(line, 'Testing net'):
                    matched = match_iteration(line)
                    test_iteration.append(
                        int(matched.group(1)) + base_test_iter)

                elif strstr(line, 'Test net output'):
                    matched = match_loss(line)
                    if matched:
                        test_loss.append(float(matched.group(1)))
                    else:
                        matched = match_accuracy(line)
                        test_accuracy.append(float(matched.group(1)))

    #train_loss.sort()
    print("TRAIN", train_iteration, train_loss)
    print("TEST", test_iteration, test_loss)
    print("ACCURACY", test_iteration, test_accuracy)

    # loss
    plt.plot(train_iteration, train_loss, 'k', label='Train loss')
    plt.plot(test_iteration, test_loss, 'r', label='Test loss')
    plt.legend()
    plt.ylabel('Loss')
    plt.xlabel('Number of iterations')
    plt.savefig('loss.png')

    # evaluation
    plt.clf()
    plt.plot(range(len(pixel_accuracy)),
             pixel_accuracy,
             'k',
             label='pixel accuracy')
    plt.plot(range(len(mean_accuracy)),
             mean_accuracy,
             'r',
             label='mean accuracy')
    plt.plot(range(len(mean_IU)), mean_IU, 'g', label='mean IU')
    plt.plot(range(len(frequency_weighted_IU)),
             frequency_weighted_IU,
             'b',
             label='frequency weighted IU')
    plt.legend(loc=0)
    plt.savefig('evaluation.png')
def main():
    log_files = process_arguments(sys.argv)

    train_iteration = []
    train_loss = []
    lr = []
    test_iteration = []
    detection_eval = []

    base_test_iter = 0
    base_train_iter = 0
    base_lr = 0

    for log_file in log_files:
        with open(log_file, 'rb') as f:
            if len(train_iteration) != 0:
                base_train_iter = train_iteration[-1]
                base_test_iter = test_iteration[-1]
                base_lr = lr[-1]

            for line in f:
                # TRAIN NET
                if strstr(line, 'Iteration') and strstr(line, 'lr'):
                    matched = match_iteration(line)
                    train_iteration.append(int(matched.group(1)))
                    matched = match_lr(line)
                    lr.append(float(matched.group(1)))

                elif strstr(line, 'Train net output'):
                    matched = match_loss(line)
                    train_loss.append(float(matched.group(1)))

                # TEST NET
                elif strstr(line, 'Testing net'):
                    matched = match_iteration(line)
                    test_iteration.append(int(matched.group(1)))

                elif strstr(line, 'Test net output'):
                    matched = match_evaluation(line)
                    detection_eval.append(float(matched.group(1)))

    # print("TRAIN", train_iteration, train_loss)
    # print("TEST", test_iteration, detection_eval)
    # print("LEARNING_RATE", train_iteration, lr)

    # loss
    plt.plot(train_iteration, train_loss, 'b', label='Train loss')
    plt.legend()
    plt.ylabel('Loss')
    plt.xlabel('Number of iterations')
    plt.savefig('loss.png')

    # learning rate
    plt.plot(train_iteration, lr, 'g', label='Learning rate')
    plt.legend()
    plt.ylabel('Learning rate')
    plt.xlabel('Number of iterations')
    plt.savefig('learning_rate.png')

    # evaluation
    plt.clf()
    plt.plot(test_iteration, detection_eval, 'r', label='Detection evaluation')
    plt.legend(loc='lower right')
    plt.ylabel('Detection_eval')
    plt.xlabel('Number of iterations')
    plt.savefig('evaluation.png')

    # overlays
    # 1 - training loss vs. detection evaluation
    fig, ax1 = plt.subplots()
    ax1.plot(train_iteration, train_loss, 'b', label='Train loss')
    ax1.set_xlabel('Number of iterations')
    ax1.set_ylabel('Loss', color='b')
    ax2 = ax1.twinx()
    ax2.plot(test_iteration, detection_eval, 'r', label='Detection evaluation')
    ax2.set_ylabel('Detection_eval', color='r')
    plt.savefig('loss_eval.png')

    # 2 - training loss vs. learning rate
    fig, ax1 = plt.subplots()
    ax1.plot(train_iteration, lr, 'g', label='Learning rate')
    ax1.set_xlabel('Number of iterations')
    ax1.set_ylabel('Learning rate', color='g')
    ax2 = ax1.twinx()
    ax2.plot(train_iteration, train_loss, 'b', label='Train loss')
    ax2.set_ylabel('Loss', color='b')
    plt.savefig('lr_loss.png')

    # 3 - learning rate vs. detection evaluation
    fig, ax1 = plt.subplots()
    ax1.plot(train_iteration, lr, 'g', label='Learning rate')
    ax1.set_xlabel('Number of iterations')
    ax1.set_ylabel('Learning rate', color='g')
    ax2 = ax1.twinx()
    ax2.plot(test_iteration, detection_eval, 'r', label='Detection evaluation')
    ax2.set_ylabel('Detection_eval', color='r')
    plt.savefig('lr_eval.png')

    f, axarr = plt.subplots(3, sharex=True)
    axarr[0].plot(train_iteration, train_loss)
    axarr[0].set_title('Iters vs. Loss')
    axarr[1].plot(train_iteration, lr, 'r')
    axarr[1].set_title('Iters vs. Learning Rate')
    axarr[2].plot(test_iteration, detection_eval, 'g')
    axarr[2].set_title('Iters vs. Detection Evaluation')
    plt.savefig('tri.png')

    plt.show()
Esempio n. 7
0
def main():
  log_files = process_arguments(sys.argv)

  train_iteration = []
  train_loss      = []
  test_iteration  = []
  test_loss       = []
  test_accuracy   = []

  pixel_accuracy        = []
  mean_accuracy         = []
  mean_IU               = []
  frequency_weighted_IU = []

  base_test_iter  = 0
  base_train_iter = 0

  for log_file in log_files:
    with open(log_file, 'rb') as f:
      if len(train_iteration) != 0:
        base_train_iter = train_iteration[-1]
        base_test_iter = test_iteration[-1]

      for line in f:
        # TRAIN NET
        if strstr(line, 'Iteration') and strstr(line, 'lr'):
          matched = match_iteration(line)
          train_iteration.append(int(matched.group(1))+base_train_iter)
        elif strstr(line, 'Iteration') and strstr(line, 'loss'):
          matched = match_loss(line)
          train_loss.append(float(matched.group(1)))


        # TEST NET
        elif strstr(line, 'Testing net'):
          matched = match_iteration(line)
          test_iteration.append(int(matched.group(1))+base_test_iter)

        elif strstr(line, 'Test net output'):
          matched = match_loss(line)
          if matched:
            test_loss.append(float(matched.group(1)))
          else:
            matched = match_accuracy(line)
            test_accuracy.append(float(matched.group(1)))

  #train_loss.sort()
  print("TRAIN", train_iteration, train_loss)
  print("TEST", test_iteration, test_loss)
  print("ACCURACY", test_iteration, test_accuracy)

  # loss
  plt.plot(train_iteration, train_loss, 'k', label='Train loss')
  plt.plot(test_iteration, test_loss, 'r', label='Test loss')
  plt.legend()
  plt.ylabel('Loss')
  plt.xlabel('Number of iterations')
  plt.savefig('loss.png')

  # evaluation
  plt.clf()
  plt.plot(range(len(pixel_accuracy)), pixel_accuracy, 'k', label='pixel accuracy')
  plt.plot(range(len(mean_accuracy)), mean_accuracy, 'r', label='mean accuracy')
  plt.plot(range(len(mean_IU)), mean_IU, 'g', label='mean IU')
  plt.plot(range(len(frequency_weighted_IU)), frequency_weighted_IU, 'b', label='frequency weighted IU')
  plt.legend(loc=0)
  plt.savefig('evaluation.png')
Esempio n. 8
0
def main():
  output_data, log_files = process_arguments(sys.argv)

  train_iteration = []
  train_loss      = []
  train_accuracy0 = []
  train_accuracy1 = []
  train_accuracy2 = []
  train_accuracy3 = []
  train_accuracy4 = []
  train_accuracy5 = []

  base_train_iter = 0

  for log_file in log_files:
    with open(log_file, 'rb') as f:
      if len(train_iteration) != 0:
        base_train_iter = train_iteration[-1]

      for line in f:
        if strstr(line, 'Iteration') and strstr(line, 'loss'):
          matched = match_loss(line)
          train_loss.append(float(matched.group(1)))

          matched = match_iteration(line)
          train_iteration.append(int(matched.group(1))+base_train_iter)

        # strong labels
        elif strstr(line, 'Train net output #0: accuracy '):
          matched = match_net_accuracy(line)
          train_accuracy0.append(float(matched.group(1)))

        elif strstr(line, 'Train net output #1: accuracy '):
          matched = match_net_accuracy(line)
          train_accuracy1.append(float(matched.group(1)))

        elif strstr(line, 'Train net output #2: accuracy '):
          matched = match_net_accuracy(line)
          train_accuracy2.append(float(matched.group(1)))

        # weak labels
        elif strstr(line, 'Train net output #0: accuracy_bbox'):
          matched = match_net_accuracy_bbox(line)
          train_accuracy0.append(float(matched.group(1)))

        elif strstr(line, 'Train net output #1: accuracy_bbox'):
          matched = match_net_accuracy_bbox(line)
          train_accuracy1.append(float(matched.group(1)))

        elif strstr(line, 'Train net output #2: accuracy_bbox'):
          matched = match_net_accuracy_bbox(line)
          train_accuracy2.append(float(matched.group(1)))

        elif strstr(line, 'Train net output #3: accuracy_strong'):
          matched = match_net_accuracy_strong(line)
          train_accuracy3.append(float(matched.group(1)))

        elif strstr(line, 'Train net output #4: accuracy_strong'):
          matched = match_net_accuracy_strong(line)
          train_accuracy4.append(float(matched.group(1)))

        elif strstr(line, 'Train net output #5: accuracy_strong'):
          matched = match_net_accuracy_strong(line)
          train_accuracy5.append(float(matched.group(1)))

  
  if output_data == 'loss':
    for x in train_loss:
      print(x)

  if output_data == 'acc1':
    for x,y,z in zip(train_accuracy0, train_accuracy1, train_accuracy2):
      print(x, y, z)

  if output_data == 'acc2':
    for x,y,z in zip(train_accuracy3, train_accuracy4, train_accuracy5):
      print(x, y, z)

  ## loss
  plt.plot(train_iteration, train_loss, 'k', label='Train loss')
  plt.legend()
  plt.ylabel('Loss')
  plt.xlabel('Number of iterations')
  plt.savefig('loss.png')

  ## evaluation
  plt.clf()
  if len(train_accuracy3) != 0:
    plt.plot(range(len(train_accuracy0)), train_accuracy0, 'k', label='accuracy bbox 0')
    plt.plot(range(len(train_accuracy1)), train_accuracy1, 'r', label='accuracy bbox 1')
    plt.plot(range(len(train_accuracy2)), train_accuracy2, 'g', label='accuracy bbox 2')
    plt.plot(range(len(train_accuracy3)), train_accuracy3, 'b', label='accuracy strong 0')
    plt.plot(range(len(train_accuracy4)), train_accuracy4, 'c', label='accuracy strong 1')
    plt.plot(range(len(train_accuracy5)), train_accuracy5, 'm', label='accuracy strong 2')
  else:
    plt.plot(range(len(train_accuracy0)), train_accuracy0, 'k', label='train accuracy 0')
    plt.plot(range(len(train_accuracy1)), train_accuracy1, 'r', label='train accuracy 1')
    plt.plot(range(len(train_accuracy2)), train_accuracy2, 'g', label='train accuracy 2')

  plt.legend(loc=0)
  plt.savefig('evaluation.png')
Esempio n. 9
0
def main():
    #log_files = process_arguments(sys.argv)

    # get newest log
    log_dir = 'log'
    log_files = [
        max(glob.iglob(os.path.join(log_dir, '*.log')), key=os.path.getctime)
    ]

    print(log_files)

    XLIM = []
    YLIM = []
    #XLIM = (0, 1000)
    #YLIM = (0.06, 0.5)

    LOGSCALE = False
    #LOGSCALE = True

    REMOVE_ZERO_LOSS = True

    train_iteration = []
    train_loss = []
    test_iteration = []
    test_loss = []
    base_test_iter = 0
    base_train_iter = 0
    curr_train_loss = []
    curr_test_loss = []

    for log_file in log_files:
        with open(log_file, 'rb') as f:
            if len(train_iteration) != 0:
                base_train_iter = train_iteration[-1]
                base_test_iter = test_iteration[-1]

            line_count = 0
            for line in f:
                line_count += 1
                #print('{}: {}'.format(line_count, line))
                if strstr(line, 'Iteration') and strstr(line, ', loss'):
                    matched = match_iteration(line)
                    train_iteration.append(
                        int(matched.group(1)) + base_train_iter)
                    TEST_LOSS = False
                    TRAIN_LOSS = True
                elif strstr(line, 'Iteration') and strstr(line, 'loss'):
                    TEST_LOSS = True
                    TRAIN_LOSS = False
                    matched = match_test_iteration(line)
                    test_iteration.append(
                        int(matched.group(1)) + base_test_iter)
                else:
                    TEST_LOSS = False
                    TRAIN_LOSS = False

                # TRAIN LOSS
                if TRAIN_LOSS:
                    matched = match_train_loss(line)
                    if matched:
                        curr_train_loss.append(float(matched.group(1)))
                        #print('#{} train loss: {}'.format(k_train,float(matched.group(2))))
                        train_loss.append(np.sum(curr_train_loss))
                        print('Iter {}: total train loss: {}'.format(
                            train_iteration[-1], np.sum(curr_train_loss)))
                        curr_train_loss = []

                # TEST LOSS
                if TEST_LOSS:
                    matched = match_test_loss(line)
                    if matched:
                        curr_test_loss.append(float(matched.group(1)))
                        #print('#{} test loss: {}'.format(k_test,float(matched.group(2))))
                        test_loss.append(np.sum(curr_test_loss))
                        print('Iter {}: total test loss: {}'.format(
                            test_iteration[-1], np.sum(curr_test_loss)))
                        curr_test_loss = []

    log_base = os.path.splitext(os.path.basename(log_files[0]))[0]

    result = {'TRAIN': (train_iteration, train_loss)}
    pickle.dump(result, open(log_base + '.pkl', "wb"))

    print('read {} lines'.format(line_count))
    print("TRAIN", np.shape(train_iteration), np.shape(train_loss))
    print("TEST", np.shape(test_iteration), np.shape(test_loss))

    if REMOVE_ZERO_LOSS:
        # convert to numpy
        Ntrain0 = len(train_loss)
        train_loss = np.array(train_loss)
        train_iteration = np.array(train_iteration)

        idx = train_loss > 0.0
        train_iteration = train_iteration[idx]
        train_loss = train_loss[idx]
        print('Removed {} zeros: Size changed from {} to {}'.format(
            np.sum(idx), Ntrain0, np.size(train_loss)))

    if len(train_loss) < len(train_iteration):
        Ntrain = len(train_loss)
    else:
        Ntrain = len(train_iteration)
    if len(test_loss) < len(test_iteration):
        Ntest = len(test_loss)
    else:
        Ntest = len(test_iteration)

    if Ntrain > 0:
        print("Best TRAIN performance at index:")
        min_train_loss = np.min(train_loss)
        best_idx = np.where(train_loss == min_train_loss)[0][0]
        print(best_idx)
        print("{}: iteration {}, loss {}".format(log_base,
                                                 train_iteration[best_idx],
                                                 min_train_loss))

    if Ntest > 0:
        print("Best TEST performance at index:")
        min_test_loss = np.min(test_loss)
        best_idx = np.where(test_loss == min_test_loss)[0][0]
        print(best_idx)
        print("{}: iteration {}, loss {}".format(log_base,
                                                 test_iteration[best_idx],
                                                 min_test_loss))

    # Smoothing
    window = int(0.1 * float(Ntrain))
    window = -int(0.1 * float(Ntrain))  # median
    if abs(window) > 100:
        window = 100 * abs(window) / window  # keep sign
    if window % 2 == 0:  # make uneven
        window = window + 1

    testwindow = int(0.1 * float(Ntest))
    testwindow = -int(0.1 * float(Ntest))  # median
    if abs(testwindow) > 100:
        testwindow = 100 * abs(testwindow) / testwindow  # keep sign
    if testwindow % 2 == 0:  # make uneven
        testwindow = testwindow + 1

    if Ntrain > 0 and window < Ntrain:
        print('smoothing {} data points with window of {}'.format(
            Ntrain, window))
        if window > 0 and window < Ntrain and window > 3:
            train_loss_smooth = savgol_filter(
                train_loss, abs(window), 3)  # window size, polynomial order
        else:
            train_loss_smooth = medfilt(train_loss,
                                        abs(window))  # window size 51
    else:
        train_loss_smooth = []
    if Ntest > 0 and window < Ntest:
        print('smoothing {} data points with window of {}'.format(
            Ntest, testwindow))
        if window > 0 and window > 3:
            test_loss_smooth = savgol_filter(
                test_loss, abs(testwindow), 3)  # window size, polynomial order
        else:
            test_loss_smooth = medfilt(test_loss,
                                       abs(testwindow))  # window size 51
    else:
        test_loss_smooth = []

    ##print("Best smoothed TRAIN performance at index:")
    ##min_train_loss = np.min(train_loss_smooth[window:Ntrain-abs(window/2)])
    ##best_idx = np.where(train_loss_smooth[window:Ntrain-abs(window/2)]==min_train_loss)[0][0] + -abs(window/2)
    ##print(best_idx)
    ##print("{}: iteration {}, loss {}".format(log_base,train_iteration[best_idx],min_train_loss))

    ##print("Best smoothed TEST performance at index:")
    ##min_test_loss = np.min(test_loss_smooth[window:Ntest-abs(window/2)])
    ##best_idx = np.where(test_loss_smooth[window:Ntest-abs(window/2)]==min_test_loss)[0][0] + -abs(window/2)
    ##print(best_idx)
    ##print("{}: iteration {}, loss {}".format(log_base,test_iteration[best_idx],min_test_loss))

    # Visualization
    plot_loss(train_iteration, train_loss, test_iteration, test_loss, LOGSCALE,
              XLIM, YLIM, log_base)
    plot_loss(train_iteration, train_loss_smooth, test_iteration,
              test_loss_smooth, LOGSCALE, XLIM, YLIM, log_base + '_smooth')
Esempio n. 10
0
def main():
    output_data, log_files = process_arguments(sys.argv)

    train_iteration = []
    train_loss = []
    train_accuracy0 = []
    train_accuracy1 = []
    train_accuracy2 = []
    train_accuracy3 = []
    train_accuracy4 = []
    train_accuracy5 = []

    base_train_iter = 0

    for log_file in log_files:
        with open(log_file, 'rb') as f:
            if len(train_iteration) != 0:
                base_train_iter = train_iteration[-1]

            for line in f:
                if strstr(line, 'Iteration') and strstr(line, 'loss'):
                    matched = match_loss(line)
                    train_loss.append(float(matched.group(1)))

                    matched = match_iteration(line)
                    train_iteration.append(
                        int(matched.group(1)) + base_train_iter)

                # strong labels
                elif strstr(line, 'Train net output #0: accuracy '):
                    matched = match_net_accuracy(line)
                    train_accuracy0.append(float(matched.group(1)))

                elif strstr(line, 'Train net output #1: accuracy '):
                    matched = match_net_accuracy(line)
                    train_accuracy1.append(float(matched.group(1)))

                elif strstr(line, 'Train net output #2: accuracy '):
                    matched = match_net_accuracy(line)
                    train_accuracy2.append(float(matched.group(1)))

                # weak labels
                elif strstr(line, 'Train net output #0: accuracy_bbox'):
                    matched = match_net_accuracy_bbox(line)
                    train_accuracy0.append(float(matched.group(1)))

                elif strstr(line, 'Train net output #1: accuracy_bbox'):
                    matched = match_net_accuracy_bbox(line)
                    train_accuracy1.append(float(matched.group(1)))

                elif strstr(line, 'Train net output #2: accuracy_bbox'):
                    matched = match_net_accuracy_bbox(line)
                    train_accuracy2.append(float(matched.group(1)))

                elif strstr(line, 'Train net output #3: accuracy_strong'):
                    matched = match_net_accuracy_strong(line)
                    train_accuracy3.append(float(matched.group(1)))

                elif strstr(line, 'Train net output #4: accuracy_strong'):
                    matched = match_net_accuracy_strong(line)
                    train_accuracy4.append(float(matched.group(1)))

                elif strstr(line, 'Train net output #5: accuracy_strong'):
                    matched = match_net_accuracy_strong(line)
                    train_accuracy5.append(float(matched.group(1)))

    if output_data == 'loss':
        for x in train_loss:
            print(x)

    if output_data == 'acc1':
        for x, y, z in zip(train_accuracy0, train_accuracy1, train_accuracy2):
            print(x, y, z)

    if output_data == 'acc2':
        for x, y, z in zip(train_accuracy3, train_accuracy4, train_accuracy5):
            print(x, y, z)

    ## loss
    plt.plot(train_iteration, train_loss, 'k', label='Train loss')
    plt.legend()
    plt.ylabel('Loss')
    plt.xlabel('Number of iterations')
    plt.savefig('loss.png')

    ## evaluation
    plt.clf()
    if len(train_accuracy3) != 0:
        plt.plot(range(len(train_accuracy0)),
                 train_accuracy0,
                 'k',
                 label='accuracy bbox 0')
        plt.plot(range(len(train_accuracy1)),
                 train_accuracy1,
                 'r',
                 label='accuracy bbox 1')
        plt.plot(range(len(train_accuracy2)),
                 train_accuracy2,
                 'g',
                 label='accuracy bbox 2')
        plt.plot(range(len(train_accuracy3)),
                 train_accuracy3,
                 'b',
                 label='accuracy strong 0')
        plt.plot(range(len(train_accuracy4)),
                 train_accuracy4,
                 'c',
                 label='accuracy strong 1')
        plt.plot(range(len(train_accuracy5)),
                 train_accuracy5,
                 'm',
                 label='accuracy strong 2')
    else:
        plt.plot(range(len(train_accuracy0)),
                 train_accuracy0,
                 'k',
                 label='train accuracy 0')
        plt.plot(range(len(train_accuracy1)),
                 train_accuracy1,
                 'r',
                 label='train accuracy 1')
        plt.plot(range(len(train_accuracy2)),
                 train_accuracy2,
                 'g',
                 label='train accuracy 2')

    plt.legend(loc=0)
    plt.savefig('evaluation.png')
Esempio n. 11
0
def main():
  log_files = process_arguments(sys.argv)

  train_iteration = []
  train_loss      = []
  lr              = []
  test_iteration  = []
  test_loss       = []
  test_accuracy   = []

  top1_accuracy   = []
  top5_accuracy   = []

  base_test_iter  = 0
  base_train_iter = 0

  for log_file in log_files:
    with open(log_file, 'rb') as f:
      if len(train_iteration) != 0:
        base_train_iter = train_iteration[-1]
        base_test_iter = test_iteration[-1]

      for line in f:
        # TRAIN NET
        if strstr(line, 'Iteration') and strstr(line, 'lr'):
          matched = match_iteration(line)
          train_iteration.append(int(matched.group(1)))
          matched = match_lr(line)
          lr.append(float(matched.group(1)))

        elif strstr(line, 'Train net output'):
          matched = match_loss(line)
          train_loss.append(float(matched.group(1)))

        # TEST NET
        elif strstr(line, 'Iteration') and strstr(line, 'Testing net'):
          matched = match_iteration(line)
          test_iteration.append(int(matched.group(1)))

        elif strstr(line, 'Test net output #2'):
          matched = match_loss(line)
          test_loss.append(float(matched.group(1)))

        elif strstr(line, 'Test net output #0'):
          matched = match_top1(line)
          top1_accuracy.append(float(matched.group(1)))

        elif strstr(line, 'Test net output #1'):
          matched = match_top5(line)
          top5_accuracy.append(float(matched.group(1)))

  print("TRAIN", train_iteration, train_loss)
  print("TEST", test_iteration, test_loss)
  print("LEARNING RATE", train_iteration, lr)
  print("TOP1_ACCURACY", test_iteration, top1_accuracy)
  print("TOP5_ACCURACY", test_iteration, top5_accuracy)

  # loss
  plt.plot(train_iteration, train_loss, 'k', label='Train loss')
  plt.plot(test_iteration, test_loss, 'r', label='Test loss')
  plt.legend()
  plt.ylabel('Loss')
  plt.xlabel('Number of iterations')
  plt.savefig('loss.png')

  plt.show()

  # learning rate
  plt.clf()
  plt.plot(train_iteration, lr, 'g', label='Learning rate')
  plt.legend()
  plt.ylabel('Learning rate')
  plt.xlabel('Number of iterations')
  plt.savefig('lr.png')

  plt.show()
  
  # evaluation
  plt.clf()
  plt.plot(test_iteration, top1_accuracy, 'm', label='Top-1 accuracy')
  plt.plot(test_iteration, top5_accuracy, 'c', label='Top-5 accuracy')
  plt.legend(loc=0)
  plt.savefig('evaluation.png')

  plt.show()