def main(): """ Parsing command line parameters, reading data, fitting an NGCN and scoring the model. """ args = parameter_parser() torch.manual_seed(args.seed) tab_printer(args) graph = graph_reader(args.edge_path) features = feature_reader(args.features_path) target = target_reader(args.target_path) trainer = Trainer(args, graph, features, target) trainer.fit()
def main(): """ Parsing command line parameters, reading data, graph decomposition, fitting a ClusterGCN and scoring the model. """ args = parameter_parser() torch.manual_seed(args.seed) tab_printer(args) graph = graph_reader(args.edge_path) features = feature_reader(args.features_path) target = target_reader(args.target_path) clustering_machine = ClusteringMachine(args, graph, features, target) clustering_machine.decompose() gcn_trainer = ClusterGCNTrainer(args, clustering_machine) gcn_trainer.train() gcn_trainer.test()
def main(): """ Parsing command line parameters, reading data. Doing sparsification, fitting a GWNN and saving the logs. """ args = parameter_parser() tab_printer(args) graph = graph_reader(args.edge_path) features = feature_reader(args.features_path) target = target_reader(args.target_path) sparsifier = WaveletSparsifier(graph, args.scale, args.approximation_order, args.tolerance) sparsifier.calculate_all_wavelets() trainer = GWNNTrainer(args, sparsifier, features, target) trainer.fit() trainer.score() save_logs(args, trainer.logs)
def main(): """ Parsing command line parameters, reading data, fitting an NGCN and scoring the model. """ args = parameter_parser() torch.manual_seed(args.seed) tab_printer(args) graph = graph_reader(args.edge_path) features = feature_reader(args.features_path) target = target_reader(args.target_path) trainer = Trainer(args, graph, features, target, True) trainer.fit() if args.model == "mixhop": trainer.evaluate_architecture() args = trainer.reset_architecture() trainer = Trainer(args, graph, features, target, False) trainer.fit()