item = item_inverse_mapper[ind] print("item:%s, # of reviews: %1d" % (item, len(X[:, ind].data))) elif question == "3": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # Fit least-squares estimator model = linear_model.LeastSquares() model.fit(X, y) print(model.w) utils.test_and_plot(model, X, y, title="Least Squares", filename="least_squares_outliers.pdf") elif question == "3.1": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] mylist = [] for i in range(0, 400): mylist.append(1) for i in range(0, 100): mylist.append(0.1) z = np.array(mylist)
print("The item {} has {} reviews".format( item_code, ratings['item'].value_counts().loc[item_code])) elif question == "3": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # Fit least-squares estimator model = linear_model.LeastSquares() model.fit(X, y) print(model.w) utils.test_and_plot(model, X, y, title="Least Squares", filename="least_squares_outliers.pdf") elif question == "3.1": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] len = len(X) v = np.full(shape=len, fill_value=1) v[400:500] = 0.1 V = np.diag(v) model = linear_model.WeightedLeastSquares() model.fit(X, y, V)
# YOUR CODE HERE FOR Q1.3 elif question == "3": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # Fit least-squares estimator model = linear_model.LeastSquares() model.fit(X, y) print(model.w) utils.test_and_plot(model, X, y, title="Least Squares", filename="least_squares_outliers.pdf") elif question == "3.1": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # YOUR CODE HERE elif question == "3.3": # loads the data in the form of dictionary data = load_dataset("outliersData.pkl") X = data['X'] y = data['y']
print( "Number of reviews for the 5 recommendations based on cosine similarity:", item_record[nearest_index_3[0, 1:]]) elif question == "3": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # Fit least-squares estimator model = linear_model.LeastSquares() model.fit(X, y) print(model.w) utils.test_and_plot(model, X, y, title="Least Squares", filename="least_squares_outliers.pdf") elif question == "3.1": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # YOUR CODE HERE z = np.zeros((500)) z[0:100] = 1 z[100:500] = 0.1 model = linear_model.WeightedLeastSquares() model.fit(X, y, z) print(model.w)
X_can_all = np.delete(X_all, [0, 1, 3], axis=1) X_can_all = np.reshape(X_can_all, (X_can_all.shape[0], 3)) X_can_all = X_can_all.astype(float) X_can_cases = get_feature(X_all, 2) X_can_cases_14_100k = get_feature(X_all, 4) X_can_cases_100k = get_feature(X_all, 5) model = linear_model.LeastSquares() w = model.fit(X_can_cases, y_can) y_pred = model.predict(X_can_cases) utils.test_and_plot(model, X_can_cases, y_can, Xtest=None, ytest=None, title="Canadian", filename="Canadian_cases_feature.pdf") # model.fit(X_cases, y) # y_pred = model.predict(X_cases) # model.fit(X_cases, y) # y_pred = model.predict(X_cases) # y_pred = model.predict(X_test) # # y_pred = model.predict(X_cases) print("World: ")
y = utils.s2v(train_exp_dataset) Xtest = utils.s2v(ref_dataset[train_day:]) ytest = utils.s2v(exp_dataset[train_day:]) poly_par = 1 if test_par != None: poly_par = int(test_par) model = linear_model.LeastSquaresPoly(p=poly_par) model.fit(X, y) titlename = exp_name + "_" + exp_ct_name + "_vs_" + ref_name + "_" + ref_ct_name + "_lag" + str( lag) + "_p" + str(poly_par) filename = "LRplot_" + titlename + ".pdf" utils.test_and_plot(model, X, y, Xtest, ytest, title=titlename, filename=filename) if question == "corr": dataset = read_dataset("phase1_training_data.csv") dataset = utils.get_all(dataset) n_ct, ct_key, ct_mapper, ct_inv_mapper, ct_ind = utils.make_mapper( dataset) day_n = len(dataset[dataset[ct_key] == 'CA']["cases"]) exp_name = "cases_14_100k" exp_ct_name = 'CA'
reviews = X_binary.getcol(ind).sum() print(item_inverse_mapper[ind] + " " + str(reviews)) elif question == "3": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # Fit least-squares estimator model = linear_model.LeastSquares() model.fit(X, y) print(model.w) utils.test_and_plot(model, X, y, title="Least Squares", filename="least_squares_outliers.pdf") elif question == "3.1": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # YOUR CODE HERE elif question == "3.3": # loads the data in the form of dictionary data = load_dataset("outliersData.pkl") X = data['X'] y = data['y']
print(X_sums[:][98068]) print(X_sums[:][98066]) elif question == "3": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # Fit least-squares estimator model = linear_model.LeastSquares() model.fit(X, y) print(model.w) utils.test_and_plot(model, X, y, title="Least Squares", filename="least_squares_outliers.png") elif question == "3.1": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] dataPoints = np.ones(400) outliers = np.full((100, ), 0.1) data = np.concatenate((dataPoints, outliers), axis=0) z = np.diag(data) model = linear_model.WeightedLeastSquares() model.fit(X, y, z)
print(X_sums[:][98068]) print(X_sums[:][98066]) elif question == "3": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # Fit least-squares estimator model = linear_model.LeastSquares() model.fit(X, y) print(model.w) utils.test_and_plot(model, X, y, title="Least Squares", filename="least_squares_outliers.pdf") elif question == "3.1": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] R, C = X.shape # YOUR CODE HERE z = np.ones(500) z[400:500] = z[400:500] * .1 d = np.diag(z) model = linear_model.WeightedLeastSquares()
# YOUR CODE HERE FOR Q1.3 elif question == "3": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # Fit least-squares estimator model = linear_model.LeastSquares() model.fit(X, y) print(model.w) utils.test_and_plot(model, X, y, title="Least Squares", filename="least_squares_outliers.pdf") elif question == "3.1": data = load_dataset("outliersData.pkl") X = data['X'] y = data['y'] # YOUR CODE HERE model = linear_model.WeightedLeastSquares() model.fit(X[:400], y[:400], 1) model.fit(X[400:], y[400:], 0.1) print(model.w) utils.test_and_plot(model,