Esempio n. 1
0
    def test_backward_case1(self):
        """Backward if non-zero gradient is out of a face."""

        vertices = [
            [0.8, 0.8, 1.],
            [0.0, -0.5, 1.],
            [0.2, -0.4, 1.]]
        faces = [[0, 1, 2]]
        pxi = 35
        pyi = 25
        grad_ref = [
            [1.6725862, -0.26021874, 0.],
            [1.41986704, -1.64284933, 0.],
            [0., 0., 0.],
        ]

        renderer = nr.Renderer(camera_mode='look_at')
        renderer.image_size = 64
        renderer.anti_aliasing = False
        renderer.perspective = False

        vertices = torch.from_numpy(np.array(vertices, np.float32)).cuda()
        faces = torch.from_numpy(np.array(faces, np.int32)).cuda()
        grad_ref = torch.from_numpy(np.array(grad_ref, np.float32)).cuda()
        vertices, faces, grad_ref = utils.to_minibatch((vertices, faces, grad_ref))
        vertices.requires_grad = True
        images = renderer(vertices, faces, mode='silhouettes')
        loss = torch.sum(torch.abs(images[:, pyi, pxi] - 1))
        loss.backward()

        assert(torch.allclose(vertices.grad, grad_ref, rtol=1e-2))
Esempio n. 2
0
    def test_backward_case2(self):
        """Backward if non-zero gradient is on a face."""

        vertices = [
            [0.8, 0.8, 1.],
            [-0.5, -0.8, 1.],
            [0.8, -0.8, 1.]]
        faces = [[0, 1, 2]]
        pyi = 40
        pxi = 50
        grad_ref = [
            [0.98646867, 1.04628897, 0.],
            [-1.03415668, - 0.10403691, 0.],
            [3.00094461, - 1.55173182, 0.],
        ]

        renderer = nr.Renderer(camera_mode='look_at')
        renderer.image_size = 64
        renderer.anti_aliasing = False
        renderer.perspective = False

        vertices = torch.from_numpy(np.array(vertices, np.float32)).cuda()
        faces = torch.from_numpy(np.array(faces, np.int32)).cuda()
        grad_ref = torch.from_numpy(np.array(grad_ref, np.float32)).cuda()
        vertices, faces, grad_ref = utils.to_minibatch((vertices, faces, grad_ref))
        vertices.requires_grad = True
        images = renderer(vertices, faces, mode='silhouettes')
        loss = torch.sum(torch.abs(images[:, pyi, pxi]))
        loss.backward()

        assert(torch.allclose(vertices.grad, grad_ref, rtol=1e-2))
    def test_backward_case1(self):
        vertices = [
            [-0.9, -0.9, 2.],
            [-0.8, 0.8, 1.],
            [0.8, 0.8, 0.5]]
        faces = [[0, 1, 2]]

        renderer = neural_renderer.Renderer()
        renderer.image_size = 64
        renderer.anti_aliasing = False
        renderer.perspective = False
        renderer.camera_mode = 'none'

        vertices = cp.array(vertices, 'float32')
        faces = cp.array(faces, 'int32')
        vertices, faces = utils.to_minibatch((vertices, faces))
        vertices = chainer.Variable(vertices)

        images = renderer.render_depth(vertices, faces)
        loss = cf.sum(cf.square(images[0, 15, 20] - 1))
        loss.backward()
        grad = vertices.grad.get()
        grad2 = np.zeros_like(grad)

        for i in range(3):
            for j in range(3):
                eps = 1e-3
                vertices2 = vertices.data.copy()
                vertices2[i, j] += eps
                images = renderer.render_depth(vertices2, faces)
                loss2 = cf.sum(cf.square(images[0, 15, 20] - 1))
                grad2[i, j] = ((loss2 - loss) / eps).data.get()

        chainer.testing.assert_allclose(grad, grad2, atol=1e-3)
Esempio n. 4
0
    def test_backward_case1(self):
        vertices = [
            [-0.9, -0.9, 2.],
            [-0.8, 0.8, 1.],
            [0.8, 0.8, 0.5]]
        faces = [[0, 1, 2]]

        renderer = nr.Renderer(camera_mode='look_at')
        renderer.image_size = 64
        renderer.anti_aliasing = False
        renderer.perspective = False
        renderer.camera_mode = 'none'

        vertices = torch.from_numpy(np.array(vertices, np.float32)).cuda()
        faces = torch.from_numpy(np.array(faces, np.int32)).cuda()
        vertices, faces = utils.to_minibatch((vertices, faces))
        vertices.requires_grad = True

        images = renderer(vertices, faces, mode='depth')
        loss = torch.sum((images[0, 15, 20] - 1)**2)
        loss.backward()
        grad = vertices.grad.clone()
        grad2 = np.zeros_like(grad)

        for i in range(3):
            for j in range(3):
                eps = 1e-3
                vertices2 = vertices.clone()
                vertices2[i, j] += eps
                images = renderer.render_depth(vertices2, faces)
                loss2 = torch.sum((images[0, 15, 20] - 1)**2)
                grad2[i, j] = ((loss2 - loss) / eps).item()

        assert(np.allclose(grad, grad2, atol=1e-3))
Esempio n. 5
0
    def test_backward_case1(self):
        vertices = [[-0.9, -0.9, 2.], [-0.8, 0.8, 1.], [0.8, 0.8, 0.5]]
        faces = [[0, 1, 2]]

        renderer = neural_renderer.Renderer()
        renderer.image_size = 64
        renderer.anti_aliasing = False
        renderer.perspective = False
        renderer.camera_mode = 'none'

        vertices = cp.array(vertices, 'float32')
        faces = cp.array(faces, 'int32')
        vertices, faces = utils.to_minibatch((vertices, faces))
        vertices = chainer.Variable(vertices)

        images = renderer.render_depth(vertices, faces)
        loss = cf.sum(cf.square(images[0, 15, 20] - 1))
        loss.backward()
        grad = vertices.grad.get()
        grad2 = np.zeros_like(grad)

        for i in range(3):
            for j in range(3):
                eps = 1e-3
                vertices2 = vertices.data.copy()
                vertices2[i, j] += eps
                images = renderer.render_depth(vertices2, faces)
                loss2 = cf.sum(cf.square(images[0, 15, 20] - 1))
                grad2[i, j] = ((loss2 - loss) / eps).data.get()

        chainer.testing.assert_allclose(grad, grad2, atol=1e-3)
Esempio n. 6
0
    def test_backward_case1(self):
        """Backward if non-zero gradient is out of a face."""

        vertices = [[0.8, 0.8, 1.], [0.0, -0.5, 1.], [0.2, -0.4, 1.]]
        faces = [[0, 1, 2]]
        pxi = 35
        pyi = 25
        grad_ref = [
            [1.6725862, -0.26021874, 0.],
            [1.41986704, -1.64284933, 0.],
            [0., 0., 0.],
        ]

        renderer = nr.Renderer()
        renderer.camera.position = self.position
        renderer.camera.image_size = 64
        renderer.anti_aliasing = False
        renderer.camera.perspective = False
        renderer.light_intensity_ambient = 1.0
        renderer.light_intensity_directional = 0.0

        vertices = torch.from_numpy(np.array(vertices,
                                             dtype=np.float32)).cuda()
        faces = torch.from_numpy(np.array(faces, dtype=np.int32)).cuda()
        textures = torch.ones(faces.shape[0], 4, 4, 4, 3,
                              dtype=torch.float32).cuda()
        grad_ref = torch.from_numpy(np.array(grad_ref,
                                             dtype=np.float32)).cuda()
        vertices, faces, textures, grad_ref = utils.to_minibatch(
            (vertices, faces, textures, grad_ref))
        vertices, faces, textures, grad_ref = vertices.cuda(), faces.cuda(
        ), textures.cuda(), grad_ref.cuda()
        vertices.requires_grad = True
        images = renderer(vertices, faces, textures)
        images = torch.mean(images, dim=1)
        loss = torch.sum(torch.abs(images[:, pyi, pxi] - 1))
        loss.backward()

        assert (torch.allclose(vertices.grad, grad_ref, rtol=1e-2))
Esempio n. 7
0
    def test_backward_case2(self):
        """Backward if non-zero gradient is on a face."""

        vertices = [[0.8, 0.8, 1.], [-0.5, -0.8, 1.], [0.8, -0.8, 1.]]
        faces = [[0, 1, 2]]
        pyi = 40
        pxi = 50
        grad_ref = [
            [0.98646867, 1.04628897, 0.],
            [-1.03415668, -0.10403691, 0.],
            [3.00094461, -1.55173182, 0.],
        ]

        renderer = nr.Renderer()
        renderer.position = self.position
        renderer.camera.image_size = 64
        renderer.anti_aliasing = False
        renderer.camera.perspective = False
        renderer.light_intensity_ambient = 1.0
        renderer.light_intensity_directional = 0.0

        vertices = torch.from_numpy(np.array(vertices,
                                             dtype=np.float32)).cuda()
        faces = torch.from_numpy(np.array(faces, dtype=np.int32)).cuda()
        textures = torch.ones(faces.shape[0], 4, 4, 4, 3,
                              dtype=torch.float32).cuda()
        grad_ref = torch.from_numpy(np.array(grad_ref,
                                             dtype=np.float32)).cuda()
        vertices, faces, textures, grad_ref = utils.to_minibatch(
            (vertices, faces, textures, grad_ref))
        vertices.requires_grad = True

        images = renderer(vertices, faces, textures)
        images = torch.mean(images, dim=1)
        loss = torch.sum(torch.abs(images[:, pyi, pxi]))
        loss.backward()

        assert (torch.allclose(vertices.grad, grad_ref, rtol=1e-2))
    def test_backward_case2(self):
        """Backward if non-zero gradient is on a face."""

        vertices = [
            [0.8, 0.8, 1.],
            [-0.5, -0.8, 1.],
            [0.8, -0.8, 1.]]
        faces = [[0, 1, 2]]
        pyi = 40
        pxi = 50
        grad_ref = [
            [0.98646867, 1.04628897, 0.],
            [-1.03415668, - 0.10403691, 0.],
            [3.00094461, - 1.55173182, 0.],
        ]

        renderer = neural_renderer.Renderer()
        renderer.image_size = 64
        renderer.anti_aliasing = False
        renderer.perspective = False
        renderer.light_intensity_ambient = 1.0
        renderer.light_intensity_directional = 0.0

        vertices = cp.array(vertices, 'float32')
        faces = cp.array(faces, 'int32')
        textures = cp.ones((faces.shape[0], 4, 4, 4, 3), 'float32')
        grad_ref = cp.array(grad_ref, 'float32')
        vertices, faces, textures, grad_ref = utils.to_minibatch((vertices, faces, textures, grad_ref))
        vertices = chainer.Variable(vertices)

        images = renderer.render(vertices, faces, textures)
        images = cf.mean(images, axis=1)
        loss = cf.sum(cf.absolute(images[:, pyi, pxi]))
        loss.backward()

        grad_ref = cp.array(grad_ref, 'float32')
        chainer.testing.assert_allclose(vertices.grad, grad_ref, rtol=1e-2)
    def test_backward_case1(self):
        """Backward if non-zero gradient is out of a face."""

        vertices = [
            [0.8, 0.8, 1.],
            [0.0, -0.5, 1.],
            [0.2, -0.4, 1.]]
        faces = [[0, 1, 2]]
        pxi = 35
        pyi = 25
        grad_ref = [
            [1.6725862, -0.26021874, 0.],
            [1.41986704, -1.64284933, 0.],
            [0., 0., 0.],
        ]

        renderer = neural_renderer.Renderer()
        renderer.image_size = 64
        renderer.anti_aliasing = False
        renderer.perspective = False
        renderer.light_intensity_ambient = 1.0
        renderer.light_intensity_directional = 0.0

        vertices = cp.array(vertices, 'float32')
        faces = cp.array(faces, 'int32')
        textures = cp.ones((faces.shape[0], 4, 4, 4, 3), 'float32')
        grad_ref = cp.array(grad_ref, 'float32')
        vertices, faces, textures, grad_ref = utils.to_minibatch((vertices, faces, textures, grad_ref))
        vertices = chainer.Variable(vertices)

        images = renderer.render(vertices, faces, textures)
        images = cf.mean(images, axis=1)
        loss = cf.sum(cf.absolute(images[:, pyi, pxi] - 1))
        loss.backward()

        chainer.testing.assert_allclose(vertices.grad, grad_ref, rtol=1e-2)