Esempio n. 1
0
    def forward(self, X, X2=None):

        if X2 is None:
            X2 = X

        l = transform_forward(self.lengthscale)

        return transform_forward(self.variance) * torch.mm(X / l, (X2 / l).t())
Esempio n. 2
0
    def forward(self, X, X2=None):

        if X2 is None:
            X2 = X

        l = transform_forward(self.lengthscale)

        return transform_forward(
            self.variance) * (-0.5 * sqdist(X / l, X2 / l)).exp()
Esempio n. 3
0
    def f_callback(m, v, it, t):
        varn_list.append(transform_forward(m.variance).item())
        logpr_list.append(m().item() / m.D)
        if it == 1:
            t_list.append(t)
        else:
            t_list.append(t_list[-1] + t)

        if save_checkpoint and not (it % checkpoint_period):
            torch.save(m.state_dict(), fn_checkpoint + '_it%d.pt' % it)

        print('it=%d, f=%g, varn=%g, t: %g' %
              (it, logpr_list[-1], transform_forward(m.variance), t_list[-1]))
Esempio n. 4
0
    def f_callback(model, negative_log_likelihood, iteration, t):
        variances.append(transform_forward(model.variance).item())
        log_probabilities.append(model().item()/model.D)
        if iteration == 1:
            t_list.append(t)
        else:
            t_list.append(t_list[-1] + t)

        if save_checkpoint and not (iteration % checkpoint_period):
            torch.save(model.state_dict(), fn_checkpoint + '_it%d.pt' % iteration)

        print('iteration=%d, log probability=%g, variance=%g, t: %g'
              % (iteration, log_probabilities[-1], transform_forward(model.variance), t_list[-1]))
Esempio n. 5
0
    def forward(self, X, X2=None):

        if X2 is None:
            shape = [X.size()[0], X.size()[0]]
        else:
            shape = [X.size()[0], X2.size()[0]]

        return transform_forward(self.variance) * torch.ones(
            shape[0], shape[1])
Esempio n. 6
0
    def f_callback(m, v, it, t):
        varn_list.append(transform_forward(m.variance).item())
        logpr_list.append(m().item() / m.D)
        if it == 1:
            t_list.append(t)
        else:
            t_list.append(t_list[-1] + t)

        if save_checkpoint and not (it % checkpoint_period):
            torch.save(m.state_dict(), fn_checkpoint + '_it%d.pt' % it)
            f = open(EXPERIMENT + "/X" + '_it%d.pkl' % it, "wb")
            pickle.dump(m.X.detach().numpy(), f)
            f.close()

        log_string = 'it=%d, f=%g, varn=%g, t: %g' % (
            it, logpr_list[-1], transform_forward(m.variance), t_list[-1])
        print(log_string)

        f = open(EXPERIMENT + "/log.txt", "a+")
        f.write(log_string)
        f.close()
Esempio n. 7
0
def bo_search(m,
              bo_n_init,
              bo_n_iters,
              Ytrain,
              Ftrain,
              ftest,
              ytest,
              do_print=False):
    """
    initializes BO with L1 warm-start (using dataset features). returns a
    numpy array of length bo_n_iters holding the best performance attained
    so far per iteration (including initialization).

    bo_n_iters includes initialization iterations, i.e., after warm-start, BO
    will run for bo_n_iters - bo_n_init iterations.
    """

    preds = bo.BO(m.dim,
                  m.kernel,
                  bo.ei,
                  variance=transform_forward(m.variance))
    ix_evaled = []
    ix_candidates = np.where(np.invert(np.isnan(ytest)))[0].tolist()
    ybest_list = []

    ix_init = bo.init_l1(Ytrain, Ftrain, ftest).tolist()
    for l in range(bo_n_init):
        ix = ix_init[l]
        if not np.isnan(ytest[ix]):
            preds.add(m.X[ix], ytest[ix])
            ix_evaled.append(ix)
            ix_candidates.remove(ix)
        yb = preds.ybest
        if yb is None:
            yb = np.nan
        ybest_list.append(yb)

        if do_print:
            print('Iter: %d, %g [%d], Best: %g' % (l, ytest[ix], ix, yb))

    for l in range(bo_n_init, bo_n_iters):
        ix = ix_candidates[preds.next(m.X[ix_candidates])]
        preds.add(m.X[ix], ytest[ix])
        ix_evaled.append(ix)
        ix_candidates.remove(ix)
        ybest_list.append(preds.ybest)

        if do_print:
            print('Iter: %d, %g [%d], Best: %g' \
                                    % (l, ytest[ix], ix, preds.ybest))

    return np.asarray(ybest_list)
Esempio n. 8
0
def bayesian_optimization_search(model, bo_n_init, bo_n_iterations, Ytrain, Ftrain, ftest, ytest, do_print=False):
    """
    Initializes BayesianOptimization with L1 warm-start (using dataset features). Returns a
    numpy array of length bo_n_iterations holding the best performance attained
    so far per iteration (including initialization).

    bo_n_iterations includes initialization iterations, i.e., after warm-start, BayesianOptimization
    will run for bo_n_iterations - bo_n_init iterations.
    """

    predictions = bayesian_optimization.BayesianOptimization(model.dim, model.kernel, bayesian_optimization.expected_improvement,
                  variance=transform_forward(model.variance))
    ix_evaluated = []
    ix_candidates = np.where(np.invert(np.isnan(ytest)))[0].tolist()
    ybest_list = []

    def _process_ix(ix, predictions, model, ytest, ix_evaluated, ix_candidates):
        predictions.add(model.X[ix], ytest[ix])
        ix_evaluated.append(ix)
        ix_candidates.remove(ix)

    def _print_status(ix, bo_iteration, ytest, ybest, do_print):
        if do_print:
            print('Iteration: %d, %g [%d], Best: %g' % (bo_iteration, ytest[ix], ix, ybest))

    ix_init = bayesian_optimization.init_l1(Ytrain, Ftrain, ftest).tolist()
    for bo_iteration in range(bo_n_init):
        ix = ix_init[bo_iteration]
        if not np.isnan(ytest[ix]):
            _process_ix(ix, predictions, model, ytest, ix_evaluated, ix_candidates)
        ybest = predictions.ybest
        if ybest is None:
            ybest = np.nan
        ybest_list.append(ybest)

        _print_status(ix, bo_iteration, ytest, ybest, do_print)

    for bo_iteration in range(bo_n_init, bo_n_iterations):
        ix = ix_candidates[predictions.next(model.X[ix_candidates])]
        _process_ix(ix, predictions, model, ytest, ix_evaluated, ix_candidates)
        ybest = predictions.ybest
        ybest_list.append(ybest)

        _print_status(ix, bo_iteration, ytest, ybest, do_print)

    return np.asarray(ybest_list)
Esempio n. 9
0
    def forward(self, X, X2=None):

        if X2 is None:
            return torch.eye(X.size()[0]) * transform_forward(self.variance)
        else:
            return 0.
Esempio n. 10
0
 def variance(self):
     return transform_backward(
         transform_forward(self.k1.variance) +
         transform_forward(self.k2.variance))