def prior(cube, ndim, nparams): # Prior on "txi" is uniform between -1 and 1. txi is a transform of xi such that xi = abs(txi) so thing is symmetric around 0. cube[0] = utils.transform_uniform(cube[0], 0., 1.) # Prior on nightside temperature is uniform from 0 to 3000: cube[1] = utils.transform_uniform(cube[1], 0., 3000.) # Prior on delta temperature goes from 0 to 3000 as well: cube[2] = utils.transform_uniform(cube[1], 0., 3000.)
def prior(cube): # Prior on "median flux" is uniform: cube[0] = utils.transform_uniform(cube[0], -2., 2.) # Pior on the log-jitter term (note this is the log VARIANCE, not sigma); from 0.01 to 100 ppm: cube[1] = utils.transform_uniform(cube[1], np.log((0.01e-3)**2), np.log((100e-3)**2)) pcounter = 2 # Prior on coefficients of comparison stars: if compfilename is not None: for key in nights: for i in range(nights[key][3].shape[0]): cube[pcounter] = utils.transform_uniform( cube[pcounter], -10, 10) pcounter += 1 # Prior on kernel maximum variance; from 0.01 to 100 mmag: cube[pcounter] = utils.transform_loguniform(cube[pcounter], (0.01 * 1e-3)**2, (100 * 1e-3)**2) pcounter = pcounter + 1 # Now priors on the alphas = 1/lambdas; gamma(1,1) = exponential, same as Gibson+: for key in nights: for i in range(nights[key][2].shape[0]): cube[pcounter] = utils.transform_exponential(cube[pcounter]) pcounter += 1 return cube
def prior(cube, ndim, nparams): # Prior on la0 cube[0] = utils.transform_uniform(cube[0], -np.pi, np.pi) #cube[0] = utils.transform_uniform(cube[0],-180.,180.) # Prior on lo0: #cube[1] = utils.transform_uniform(cube[1],-90.,90.) cube[1] = utils.transform_uniform(cube[1], -np.pi / 2., np.pi / 2.) # Log10 of spherical harmonic coefficient: cube[2] = utils.transform_uniform(cube[2], -6, -2.) cube[3] = utils.transform_uniform(cube[3], -6, -2.)
def prior(cube, ndim, nparams): # Prior on "median flux" is uniform: cube[0] = utils.transform_uniform(cube[0],-2.,2.) # Pior on the log-jitter term (note this is the log VARIANCE, not sigma); from 1 to 10,000 ppm: cube[1] = utils.transform_uniform(cube[1],np.log((1e-6)**2),np.log((10000e-6)**2)) # Prior on the planet-to-star radius ratio: cube[2] = utils.transform_truncated_normal(cube[2],pmean,psd) # (Transformed) limb-darkening coefficients: cube[3] = utils.transform_uniform(cube[3],0.,1.) pcounter = 4 if ld_law != 'linear': cube[pcounter] = utils.transform_uniform(cube[pcounter],0.,1.) pcounter = pcounter + 1 # Prior on kernel maximum variance; from 1 to 10,000 ppm: cube[pcounter] = utils.transform_loguniform(cube[pcounter],(1*1e-6)**2,(10000*1e-6)**2) pcounter = pcounter + 1 # Now priors on the alphas = 1/lambdas; gamma(1,1) = exponential, same as Gibson+: for i in range(X.shape[0]): cube[pcounter] = utils.transform_exponential(cube[pcounter]) pcounter = pcounter + 1
def prior(cube, ndim, nparams): # Prior on "median flux" is uniform: cube[0] = utils.transform_uniform(cube[0],0.5,1.5) # Prior on log-"amplitude" is uniform: cube[1] = utils.transform_uniform(cube[1],-30,30.) # Prior on log-"timescale" is also uniform: cube[2] = utils.transform_uniform(cube[2],-30,30) # Prior on log-period: cube[3] = utils.transform_uniform(cube[3],min_timescale,max_timescale) # Prior on the log-factor: cube[4] = utils.transform_uniform(cube[4],-30.,30.) # Pior on the log-jitter term: cube[5] = utils.transform_uniform(cube[5],-100.,30.)
def prior(cube, ndim, nparams): # Prior on GP lamplitude: cube[0] = utils.transform_uniform(cube[0], -10, 10) # Prior on GP llengthscale: cube[1] = utils.transform_uniform(cube[1], -10, 10)
def prior(cube): # Prior on "median flux" is uniform: cube[0] = utils.transform_uniform(cube[0], -2., 2.) # Pior on the log-jitter term (note this is the log VARIANCE, not sigma); from 0.01 to 100 ppm: cube[1] = utils.transform_uniform(cube[1], np.log((0.01e-3)**2), np.log((100e-3)**2)) # Prior on t0: if t0mean is None: cube[2] = utils.transform_uniform(cube[2], np.min(t), np.max(t)) else: cube[2] = utils.transform_normal(cube[2], t0mean, t0sd) # Prior on Period: if Pmean is None: cube[3] = utils.transform_loguniform(cube[3], 0.1, 1000.) else: cube[3] = utils.transform_normal(cube[3], Pmean, Psd) # Prior on planet-to-star radius ratio: if pmean is None: cube[4] = utils.transform_uniform(cube[4], 0, 1) else: cube[4] = utils.transform_truncated_normal(cube[4], pmean, psd) # Prior on a/Rs: if amean is None: cube[5] = utils.transform_uniform(cube[5], 0.1, 300.) else: cube[5] = utils.transform_normal(cube[5], amean, asd) # Prior on impact parameter: if bmean is None: cube[6] = utils.transform_uniform(cube[6], 0, 2.) else: cube[6] = utils.transform_truncated_normal(cube[6], bmean, bsd, a=0., b=2.) # Prior either on the linear LD or the transformed first two-parameter law LD (q1): cube[7] = utils.transform_uniform(cube[7], 0, 1.) pcounter = 8 # (Transformed) limb-darkening coefficient for two-parameter laws (q2): if ld_law != 'linear': cube[pcounter] = utils.transform_uniform(cube[pcounter], 0, 1.) pcounter += 1 if not circular: if eccmean is None: cube[pcounter] = utils.transform_uniform(cube[pcounter], 0, 1.) else: cube[pcounter] = utils.transform_truncated_normal(cube[pcounter], eccmean, eccsd, a=0., b=1.) pcounter += 1 if omegamean is None: cube[pcounter] = utils.transform_uniform(cube[pcounter], 0, 360.) else: cube[pcounter] = utils.transform_truncated_normal(cube[pcounter], omegamean, omegasd, a=0., b=360.) pcounter += 1 # Prior on coefficients of comparison stars: if compfilename is not None: for key in nights: for i in range(nights[key][3].shape[0]): cube[pcounter] = utils.transform_uniform( cube[pcounter], -10, 10) pcounter += 1 # Prior on kernel maximum variance; from 0.01 to 100 mmag: cube[pcounter] = utils.transform_loguniform(cube[pcounter], (0.01 * 1e-3)**2, (100 * 1e-3)**2) pcounter = pcounter + 1 # Now priors on the alphas = 1/lambdas; gamma(1,1) = exponential, same as Gibson+: for key in nights: for i in range(nights[key][2].shape[0]): cube[pcounter] = utils.transform_exponential(cube[pcounter]) pcounter += 1 return cube
def prior(cube, ndim, nparams): # Prior on Temperature of spot: cube[0] = utils.transform_uniform(cube[0], 4000, 6500) # Prior on temperature of WASP-19: cube[1] = utils.transform_normal(cube[1], 5460, 90)