Esempio n. 1
0
def evaluate(model, dataloader, epoch, writer, logger, data_name='val'):

    save_root = os.path.join(opt.result_dir, opt.tag, str(epoch), data_name)

    utils.try_make_dir(save_root)

    total_psnr = 0.0
    total_ssim = 0.0
    ct_num = 0
    # print('Start testing ' + tag + '...')
    for i, sample in enumerate(dataloader):
        utils.progress_bar(i, len(dataloader), 'Eva... ')

        path = sample['path']
        with torch.no_grad():
            recovered = model(sample)

        if data_name == 'val':
            label = sample['label']
            label = tensor2im(label)
            recovered = tensor2im(recovered)

            ct_num += 1

            total_psnr += psnr(recovered, label, data_range=255)
            total_ssim += ski_ssim(recovered,
                                   label,
                                   data_range=255,
                                   multichannel=True)

            save_dst = os.path.join(save_root,
                                    utils.get_file_name(path[0]) + '.png')
            Image.fromarray(recovered).save(save_dst)

        elif data_name == 'test':
            pass

        else:
            raise Exception('Unknown dataset name: %s.' % data_name)

        # 保存结果
        save_dst = os.path.join(save_root,
                                utils.get_file_name(path[0]) + '.png')
        Image.fromarray(recovered).save(save_dst)

    if data_name == 'val':
        ave_psnr = total_psnr / float(ct_num)
        ave_ssim = total_ssim / float(ct_num)
        # write_loss(writer, f'val/{data_name}', 'psnr', total_psnr / float(ct_num), epochs)

        logger.info(f'Eva({data_name}) epoch {epoch}, psnr: {ave_psnr}.')
        logger.info(f'Eva({data_name}) epoch {epoch}, ssim: {ave_ssim}.')

        return f'{ave_ssim: .3f}'
    else:
        return ''
Esempio n. 2
0
def evaluate(model, dataloader, epochs, writer, logger, data_name='val'):

    save_root = os.path.join(opt.result_dir, opt.tag, str(epochs), data_name)

    utils.try_make_dir(save_root)

    correct = 0
    ct_num = 0
    counts = defaultdict(int)
    corrects = defaultdict(int)

    # print('Start testing ' + tag + '...')
    for i, data in enumerate(dataloader):
        if data_name == 'val':
            input, label, path = data['input'], data['label'], data['path']
            utils.progress_bar(i, len(dataloader), 'Eva... ')
            # ct_num += 1
            with torch.no_grad():
                img_var = Variable(input,
                                   requires_grad=False).to(device=opt.device)
                label_var = Variable(label,
                                     requires_grad=False).to(device=opt.device)
                predicted = model(img_var)
                _, predicted = torch.max(predicted, 1)
                ct_num += label.size(0)
                correct += (predicted == label_var).sum().item()

            for idx, l in enumerate(label):
                l = l.item()
                counts[l] += 1
                p = predicted[idx].item()
                if p == l:
                    corrects[l] += 1

        elif data_name == 'test':
            pass

        else:
            raise Exception('Unknown dataset name: %s.' % data_name)

    if data_name == 'val':
        # write_loss(writer, 'val/%s' % data_name, 'psnr', ave_psnr / float(ct_num), epochs)
        acc = 0.
        for k in counts:
            acc += corrects[k] / counts[k]

        err = 1 - acc / len(counts)
        err = err + 0.03  # 线上错误率比线下高0.03
        # logger.info('Eva(%s) epoch %d ,' % (data_name, epochs) + 'Accuracy: ' + str(correct / float(ct_num)) + '.')
        logger.info('Eva(%s) epoch %d ,' % (data_name, epochs) + 'Err: ' +
                    str(err) + '.')
        # ipdb.set_trace()
        return str(round(correct / float(ct_num), 3))
    else:
        return ''
Esempio n. 3
0
from network import get_model
from eval import evaluate

from utils import *

from mscv.summary import create_summary_writer, write_meters_loss, write_image

import misc_utils as utils

# 初始化
with torch.no_grad():
    # 初始化路径
    save_root = os.path.join(opt.checkpoint_dir, opt.tag)
    log_root = os.path.join(opt.log_dir, opt.tag)

    utils.try_make_dir(save_root)
    utils.try_make_dir(log_root)

    train_dataloader = dl.train_dataloader
    val_dataloader = dl.val_dataloader

    # 初始化日志
    logger = init_log(training=True)

    # 初始化模型
    Model = get_model(opt.model)
    model = Model(opt)

    # 暂时还不支持多GPU
    # if len(opt.gpu_ids):
    #     model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)