def main(args): #network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = utils.get_dataset(args.data_dir) #train_set = facenet.dataset_from_list2(args.data_dir,'dataset/casia_maxpy_mtcnnpy_182',error_classes=[],drop_key='AsianStarCropBig_YES') nrof_classes = len(train_set) print('nrof_classes: ', nrof_classes) image_list, label_list = utils.get_image_paths_and_labels(train_set) image_list = np.array(image_list) label_list = np.array(label_list, dtype=np.int32) dataset_size = len(image_list) single_batch_size = args.people_per_batch * args.images_per_person indices = range(dataset_size) np.random.shuffle(indices) def _sample_people_softmax(x): global softmax_ind if softmax_ind >= dataset_size: np.random.shuffle(indices) softmax_ind = 0 true_num_batch = min(single_batch_size, dataset_size - softmax_ind) sample_paths = image_list[indices[softmax_ind:softmax_ind + true_num_batch]] sample_labels = label_list[indices[softmax_ind:softmax_ind + true_num_batch]] softmax_ind += true_num_batch return (np.array(sample_paths), np.array(sample_labels, dtype=np.int32)) def _sample_people(x): '''We sample people based on tf.data, where we can use transform and prefetch. ''' image_paths, num_per_class = sample_people( train_set, args.people_per_batch * (args.num_gpus - 1), args.images_per_person) labels = [] for i in range(len(num_per_class)): labels.extend([i] * num_per_class[i]) return (np.array(image_paths), np.array(labels, dtype=np.int32)) def _parse_function(filename, label): file_contents = tf.read_file(filename) image = tf.image.decode_image(file_contents, channels=3) #image = tf.image.decode_jpeg(file_contents, channels=3) print(image.shape) if args.random_crop: print('use random crop') image = tf.random_crop(image, [args.image_size, args.image_size, 3]) else: print('Not use random crop') #image.set_shape((args.image_size, args.image_size, 3)) image.set_shape((None, None, 3)) image = tf.image.resize_images(image, size=(args.image_height, args.image_width)) #print(image.shape) if args.random_flip: image = tf.image.random_flip_left_right(image) #pylint: disable=no-member #image.set_shape((args.image_size, args.image_size, 3)) image.set_shape((args.image_height, args.image_width, 3)) if debug: image = tf.cast(image, tf.float32) else: image = tf.image.per_image_standardization(image) return image, label #train_set = facenet.dataset_from_list(args.data_dir,'dataset/ms_mp',keys=['MultiPics']) #train_set = facenet.dataset_from_list(args.data_dir,'dataset/ms_mp') gpus = [0, 1] #gpus = [0] print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') #the image is generated by sequence with tf.device("/cpu:0"): softmax_dataset = tf_data.Dataset.range(args.epoch_size * args.max_nrof_epochs * 100) softmax_dataset = softmax_dataset.map(lambda x: tf.py_func( _sample_people_softmax, [x], [tf.string, tf.int32])) softmax_dataset = softmax_dataset.flat_map(_from_tensor_slices) softmax_dataset = softmax_dataset.map(_parse_function, num_threads=8, output_buffer_size=2000) softmax_dataset = softmax_dataset.batch(args.num_gpus * single_batch_size) softmax_iterator = softmax_dataset.make_initializable_iterator() softmax_next_element = softmax_iterator.get_next() softmax_next_element[0].set_shape( (args.num_gpus * single_batch_size, args.image_height, args.image_width, 3)) softmax_next_element[1].set_shape(args.num_gpus * single_batch_size) batch_image_split = tf.split(softmax_next_element[0], args.num_gpus) batch_label_split = tf.split(softmax_next_element[1], args.num_gpus) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) print('Using optimizer: {}'.format(args.optimizer)) if args.optimizer == 'ADAGRAD': opt = tf.train.AdagradOptimizer(learning_rate) elif args.optimizer == 'MOM': opt = tf.train.MomentumOptimizer(learning_rate, 0.9) tower_losses = [] tower_cross = [] tower_dist = [] tower_th = [] for i in range(args.num_gpus): with tf.device("/gpu:" + str(i)): with tf.name_scope("tower_" + str(i)) as scope: with slim.arg_scope([slim.model_variable, slim.variable], device="/cpu:0"): with tf.variable_scope( tf.get_variable_scope()) as var_scope: reuse = False if i == 0 else True #with slim.arg_scope(resnet_v2.resnet_arg_scope(args.weight_decay)): #prelogits, end_points = resnet_v2.resnet_v2_50(batch_image_split[i],is_training=True, # output_stride=16,num_classes=args.embedding_size,reuse=reuse) #prelogits, end_points = network.inference(batch_image_split[i], args.keep_probability, # phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, # weight_decay=args.weight_decay, reuse=reuse) if args.network == 'slim_sphere': prelogits = network.infer(batch_image_split[i]) elif args.network == 'densenet': with slim.arg_scope( densenet.densenet_arg_scope( args.weight_decay)): #prelogits, endpoints = densenet.densenet_small(batch_image_split[i],num_classes=args.embedding_size,is_training=True,reuse=reuse) prelogits, endpoints = densenet.densenet_small_middle( batch_image_split[i], num_classes=args.embedding_size, is_training=True, reuse=reuse) prelogits = tf.squeeze(prelogits, axis=[1, 2]) #prelogits = slim.batch_norm(prelogits, is_training=True, decay=0.997,epsilon=1e-5,scale=True,updates_collections=tf.GraphKeys.UPDATE_OPS,reuse=reuse,scope='softmax_bn') if args.loss_type == 'softmax': cross_entropy_mean = utils.softmax_loss( prelogits, batch_label_split[i], len(train_set), args.weight_decay, reuse) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) tower_cross.append(cross_entropy_mean) #loss = cross_entropy_mean + args.weight_decay*tf.add_n(regularization_losses) loss = cross_entropy_mean + tf.add_n( regularization_losses) tower_dist.append(0) tower_cross.append(cross_entropy_mean) tower_th.append(0) tower_losses.append(loss) elif args.loss_type == 'scatter' or args.loss_type == 'coco': label_reshape = tf.reshape( batch_label_split[i], [single_batch_size]) label_reshape = tf.cast( label_reshape, tf.int64) if args.loss_type == 'scatter': scatter_loss, _ = utils.weight_scatter_speed( prelogits, label_reshape, len(train_set), reuse, weight=args.weight, scale=args.scale) else: scatter_loss, _ = utils.coco_loss( prelogits, label_reshape, len(train_set), reuse, alpha=args.alpha, scale=args.scale) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = scatter_loss[ 'loss_total'] + args.weight_decay * tf.add_n( regularization_losses) tower_dist.append(scatter_loss['loss_dist']) tower_cross.append(0) tower_th.append(scatter_loss['loss_th']) tower_losses.append(loss) #loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') tf.get_variable_scope().reuse_variables() total_loss = tf.reduce_mean(tower_losses) total_cross = tf.reduce_mean(tower_cross) total_dist = tf.reduce_mean(tower_dist) total_th = tf.reduce_mean(tower_th) losses = {} losses['total_loss'] = total_loss losses['total_cross'] = total_cross losses['total_dist'] = total_dist losses['total_th'] = total_th debug_info = {} debug_info['logits'] = prelogits #debug_info['end_points'] = end_points debug_info['batch_image_split'] = batch_image_split debug_info['batch_label_split'] = batch_label_split #debug_info['endpoints'] = endpoints grads = opt.compute_gradients(total_loss, tf.trainable_variables(), colocate_gradients_with_ops=True) apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = tf.group(apply_gradient_op) save_vars = [ var for var in tf.global_variables() if 'Adagrad' not in var.name and 'global_step' not in var.name ] check_nan = tf.add_check_numerics_ops() debug_info['check_nan'] = check_nan #saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) saver = tf.train.Saver(save_vars, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) #sess.run(iterator.initializer) sess.run(softmax_iterator.initializer) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): #pdb.set_trace() if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size if debug: debug_train(args, sess, train_set, epoch, image_batch_gather, enqueue_op, batch_size_placeholder, image_batch_split, image_paths_split, num_per_class_split, image_paths_placeholder, image_paths_split_placeholder, labels_placeholder, labels_batch, num_per_class_placeholder, num_per_class_split_placeholder, len(gpus)) # Train for one epoch train(args, sess, epoch, len(gpus), debug_info, learning_rate_placeholder, phase_train_placeholder, global_step, losses, train_op, summary_op, summary_writer, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW return model_dir
def main(args): #network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = utils.get_dataset(args.data_dir) nrof_classes = len(train_set) print('nrof_classes: ', nrof_classes) image_list, label_list = utils.get_image_paths_and_labels(train_set) image_list = np.array(image_list) print('total images: {}'.format(len(image_list))) label_list = np.array(label_list, dtype=np.int32) dataset_size = len(image_list) data_reader = DataGenerator(image_list, label_list, args.batch_size) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') images_placeholder = tf.placeholder(tf.float32, [None, 112, 96, 3], name='images_placeholder') labels_placeholder = tf.placeholder(tf.int32, [None], name='labels_placeholder') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) print('Using optimizer: {}'.format(args.optimizer)) if args.optimizer == 'ADAGRAD': opt = tf.train.AdagradOptimizer(learning_rate) elif args.optimizer == 'MOM': opt = tf.train.MomentumOptimizer(learning_rate, 0.9) if args.network == 'sphere_network': prelogits = network.infer(images_placeholder) else: raise Exception('Not supported network: {}'.format(args.loss_type)) if args.loss_type == 'softmax': cross_entropy_mean = utils.softmax_loss(prelogits, labels_placeholder, len(train_set), args.weight_decay, False) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) #loss = cross_entropy_mean + args.weight_decay*tf.add_n(regularization_losses) loss = cross_entropy_mean + args.weight_decay * tf.add_n( regularization_losses) #loss = cross_entropy_mean else: raise Exception('Not supported loss type: {}'.format( args.loss_type)) #loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') losses = {} losses['total_loss'] = loss losses['softmax_loss'] = cross_entropy_mean debug_info = {} debug_info['prelogits'] = prelogits grads = opt.compute_gradients(loss, tf.trainable_variables()) train_op = opt.apply_gradients(grads, global_step=global_step) #save_vars = [var for var in tf.global_variables() if 'Adagrad' not in var.name and 'global_step' not in var.name] save_vars = tf.global_variables() #saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) saver = tf.train.Saver(save_vars, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) with sess.as_default(): #pdb.set_trace() if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, images_placeholder, labels_placeholder, data_reader, debug, learning_rate_placeholder, global_step, losses, train_op, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already model_dir = args.models_base_dir checkpoint_path = os.path.join(model_dir, 'model-%s.ckpt' % 'softmax') saver.save(sess, checkpoint_path, global_step=step, write_meta_graph=False) # Evaluate on LFW return model_dir
def main_train(args): subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = utils.dataset_from_list( args.train_data_dir, args.train_list_dir) # class objects in a list #----------------------class definition------------------------------------- ''' class ImageClass(): "Stores the paths to images for a given class" def __init__(self, name, image_paths): self.name = name self.image_paths = image_paths def __str__(self): return self.name + ', ' + str(len(self.image_paths)) + ' images' def __len__(self): return len(self.image_paths) ''' nrof_classes = len(train_set) print('nrof_classes: ', nrof_classes) image_list, label_list = utils.get_image_paths_and_labels(train_set) print('total images: ', len(image_list)) # label is in the form scalar. image_list = np.array(image_list) label_list = np.array(label_list, dtype=np.int32) dataset_size = len(image_list) single_batch_size = args.class_per_batch * args.images_per_class indices = list(range(dataset_size)) np.random.shuffle(indices) def _sample_people_softmax(x): # loading the images in batches. global softmax_ind if softmax_ind >= dataset_size: np.random.shuffle(indices) softmax_ind = 0 true_num_batch = min(single_batch_size, dataset_size - softmax_ind) sample_paths = image_list[indices[softmax_ind:softmax_ind + true_num_batch]] sample_images = [] for item in sample_paths: sample_images.append(np.load(str(item))) #print(item) #print(type(sample_paths[0])) sample_labels = label_list[indices[softmax_ind:softmax_ind + true_num_batch]] softmax_ind += true_num_batch return (np.expand_dims(np.array(sample_images, dtype=np.float32), axis=4), np.array(sample_labels, dtype=np.int32)) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') #the image is generated by sequence with tf.device("/cpu:0"): softmax_dataset = tf.data.Dataset.range(args.epoch_size * args.max_nrof_epochs) softmax_dataset = softmax_dataset.map(lambda x: tf.py_func( _sample_people_softmax, [x], [tf.float32, tf.int32])) softmax_dataset = softmax_dataset.flat_map(_from_tensor_slices) softmax_dataset = softmax_dataset.batch(single_batch_size) softmax_iterator = softmax_dataset.make_initializable_iterator() softmax_next_element = softmax_iterator.get_next() softmax_next_element[0].set_shape( (single_batch_size, args.image_height, args.image_width, args.image_width, 1)) softmax_next_element[1].set_shape(single_batch_size) batch_image_split = softmax_next_element[0] # batch_image_split = tf.expand_dims(batch_image_split, axis = 4) batch_label_split = softmax_next_element[1] learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) print('Using optimizer: {}'.format(args.optimizer)) if args.optimizer == 'ADAGRAD': opt = tf.train.AdagradOptimizer(learning_rate) elif args.optimizer == 'SGD': opt = tf.train.GradientDescentOptimizer(learning_rate) elif args.optimizer == 'MOM': opt = tf.train.MomentumOptimizer(learning_rate, 0.9) elif args.optimizer == 'ADAM': opt = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1) else: raise Exception("Not supported optimizer: {}".format( args.optimizer)) losses = {} with slim.arg_scope([slim.model_variable, slim.variable], device="/cpu:0"): with tf.variable_scope(tf.get_variable_scope()) as var_scope: reuse = False if args.network == 'sphere_network': prelogits = network.infer(batch_image_split, args.embedding_size) else: raise Exception("Not supported network: {}".format( args.network)) if args.fc_bn: prelogits = slim.batch_norm(prelogits, is_training=True, decay=0.997,epsilon=1e-5,scale=True,\ updates_collections=tf.GraphKeys.UPDATE_OPS,reuse=reuse,scope='softmax_bn') if args.loss_type == 'softmax': cross_entropy_mean = utils.softmax_loss( prelogits, batch_label_split, len(train_set), 1.0, reuse) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = cross_entropy_mean + args.weight_decay * tf.add_n( regularization_losses) print('************************' + ' Computing the softmax loss') losses['total_loss'] = cross_entropy_mean losses['total_reg'] = args.weight_decay * tf.add_n( regularization_losses) elif args.loss_type == 'lmcl': label_reshape = tf.reshape(batch_label_split, [single_batch_size]) label_reshape = tf.cast(label_reshape, tf.int64) coco_loss = utils.cos_loss(prelogits, label_reshape, len(train_set), reuse, alpha=args.alpha, scale=args.scale) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = coco_loss + args.weight_decay * tf.add_n( regularization_losses) print('************************' + ' Computing the lmcl loss') losses['total_loss'] = coco_loss losses['total_reg'] = args.weight_decay * tf.add_n( regularization_losses) elif args.loss_type == 'center': # center loss center_loss, centers, centers_update_op = get_center_loss(prelogits, label_reshape, args.center_loss_alfa, \ args.num_class_train) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = center_loss + args.weight_decay * tf.add_n( regularization_losses) print('************************' + ' Computing the center loss') losses['total_loss'] = center_loss losses['total_reg'] = args.weight_decay * tf.add_n( regularization_losses) elif args.loss_type == 'lmccl': cross_entropy_mean = utils.softmax_loss( prelogits, batch_label_split, len(train_set), 1.0, reuse) label_reshape = tf.reshape(batch_label_split, [single_batch_size]) label_reshape = tf.cast(label_reshape, tf.int64) coco_loss = utils.cos_loss(prelogits, label_reshape, len(train_set), reuse, alpha=args.alpha, scale=args.scale) center_loss, centers, centers_update_op = get_center_loss(prelogits, label_reshape, args.center_loss_alfa, \ args.num_class_train) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) reg_loss = args.weight_decay * tf.add_n( regularization_losses) loss = coco_loss + reg_loss + args.center_weighting * center_loss + cross_entropy_mean losses[ 'total_loss_center'] = args.center_weighting * center_loss losses['total_loss_lmcl'] = coco_loss losses['total_loss_softmax'] = cross_entropy_mean losses['total_reg'] = reg_loss grads = opt.compute_gradients(loss, tf.trainable_variables(), colocate_gradients_with_ops=True) apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # used for updating the centers in the center loss. if args.loss_type == 'lmccl' or args.loss_type == 'center': with tf.control_dependencies([centers_update_op]): with tf.control_dependencies(update_ops): train_op = tf.group(apply_gradient_op) else: with tf.control_dependencies(update_ops): train_op = tf.group(apply_gradient_op) save_vars = [ var for var in tf.global_variables() if 'Adagrad' not in var.name and 'global_step' not in var.name ] saver = tf.train.Saver(save_vars, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) #sess.run(iterator.initializer) sess.run(softmax_iterator.initializer) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size if debug: debug_train(args, sess, train_set, epoch, image_batch_gather,\ enqueue_op,batch_size_placeholder, image_batch_split,image_paths_split,num_per_class_split, image_paths_placeholder,image_paths_split_placeholder, labels_placeholder, labels_batch,\ num_per_class_placeholder,num_per_class_split_placeholder,len(gpus)) # Train for one epoch if args.loss_type == 'lmccl' or args.loss_type == 'center': train_contain_center(args, sess, epoch, learning_rate_placeholder, phase_train_placeholder, global_step, losses, train_op, summary_op, summary_writer, '', centers_update_op) else: train(args, sess, epoch, learning_rate_placeholder, phase_train_placeholder, global_step, losses, train_op, summary_op, summary_writer, '') # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) return model_dir
def main(args): network = importlib.import_module(args.model_def) image_size = (args.image_size, args.image_size) subdir = datetime.strftime(datetime.now(), '%Y%m%d') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) stat_file_name = os.path.join(log_dir, 'stat.h5') # Write arguments to a text file utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) dataset = utils.get_dataset(args.data_dir) # print(dataset[1].image_paths) if args.filter_filename: dataset = filter_dataset(dataset, os.path.expanduser(args.filter_filename), args.filter_percentile, args.filter_min_nrof_images_per_class) if args.validation_set_split_ratio > 0.0: train_set, val_set = utils.split_dataset(dataset, args.validation_set_split_ratio, args.min_nrof_val_images_per_class, 'SPLIT_IMAGES') else: train_set, val_set = dataset, [] nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Get a list of image paths and their labels image_list, label_list = utils.get_image_paths_and_labels(train_set) assert len(image_list) > 0, 'The training set should not be empty' val_image_list, val_label_list = utils.get_image_paths_and_labels(val_set) learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None, 1), name='labels') control_placeholder = tf.placeholder(tf.int32, shape=(None, 1), name='control') image_batch_plh = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='image_batch_p') label_batch_plh = tf.placeholder(tf.int32, name='label_batch_p') print('Number of classes in training set: %d' % nrof_classes) print('Number of examples in training set: %d' % len(image_list)) print('Number of classes in validation set: %d' % len(val_set)) print('Number of examples in validation set: %d' % len(val_image_list)) print('Building training graph') # Build the inference graph # prelogits, _ = efficientnet_builder.build_model_base(image_batch_plh, 'efficientnet-b2', training=True) prelogits, _ = network.inference(image_batch_plh, args.keep_probability, image_size, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, weights_initializer=slim.initializers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # Norm for the prelogits eps = 1e-4 prelogits_norm = tf.reduce_mean(tf.norm(tf.abs(prelogits) + eps, ord=args.prelogits_norm_p, axis=1)) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_norm * args.prelogits_norm_loss_factor) # Add center loss prelogits_center_loss, _ = utils.center_loss(prelogits, label_batch_plh, args.center_loss_alfa, nrof_classes) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch_plh, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) correct_prediction = tf.cast(tf.equal(tf.argmax(logits, 1), tf.cast(label_batch_plh, tf.int64)), tf.float32) accuracy = tf.reduce_mean(correct_prediction, name='accuracy') # Calculate the total losses regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Separate facenet variables from smaug's ones facenet_global_vars = tf.global_variables() # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = utils.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, facenet_global_vars, args.log_histograms) # Create a saver facenet_saver_vars = tf.trainable_variables() facenet_saver_vars.append(global_step) saver = tf.train.Saver(facenet_saver_vars, max_to_keep=10) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Create session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) # Create normal pipeline dataset_train = LabeledImageData(image_list, label_list, sess, batch_size=args.batch_size, shuffle=True, use_flip=True, use_black_patches=True, use_crop=True) dataset_val = LabeledImageDataRaw(val_image_list, val_label_list, sess, batch_size=args.val_batch_size, shuffle=False) # Start running operations on the Graph. Change to tf.compat in newer versions of tf. sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) ckpt_dir_or_file = tf.train.latest_checkpoint(pretrained_model) saver.restore(sess, ckpt_dir_or_file) # Training and validation loop print('Running training') nrof_steps = args.max_nrof_epochs * args.epoch_size nrof_val_samples = int(math.ceil( args.max_nrof_epochs / args.validate_every_n_epochs)) # Validate every validate_every_n_epochs as well as in the last epoch stat = { 'loss': np.zeros((nrof_steps,), np.float32), 'center_loss': np.zeros((nrof_steps,), np.float32), 'reg_loss': np.zeros((nrof_steps,), np.float32), 'xent_loss': np.zeros((nrof_steps,), np.float32), 'prelogits_norm': np.zeros((nrof_steps,), np.float32), 'accuracy': np.zeros((nrof_steps,), np.float32), 'val_loss': np.zeros((nrof_val_samples,), np.float32), 'val_xent_loss': np.zeros((nrof_val_samples,), np.float32), 'val_accuracy': np.zeros((nrof_val_samples,), np.float32), 'lfw_accuracy': np.zeros((args.max_nrof_epochs,), np.float32), 'lfw_valrate': np.zeros((args.max_nrof_epochs,), np.float32), 'learning_rate': np.zeros((args.max_nrof_epochs,), np.float32), 'time_train': np.zeros((args.max_nrof_epochs,), np.float32), 'time_validate': np.zeros((args.max_nrof_epochs,), np.float32), 'time_evaluate': np.zeros((args.max_nrof_epochs,), np.float32), 'prelogits_hist': np.zeros((args.max_nrof_epochs, 1000), np.float32), 'smaug_alpha_loss': np.zeros((nrof_steps,), np.float32), 'smaug_total_loss': np.zeros((nrof_steps,), np.float32) } global_step_ = sess.run(global_step) start_epoch = 1 + global_step_ // args.epoch_size batch_number = global_step_ % args.epoch_size biggest_acc = 0.0 for epoch in range(start_epoch, args.max_nrof_epochs + 1): step = sess.run(global_step, feed_dict=None) # Train for one epoch t = time.time() cont = train(args, sess, epoch, batch_number, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, image_batch_plh, label_batch_plh, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, stat, cross_entropy_mean, accuracy, learning_rate, prelogits, prelogits_center_loss, prelogits_norm, args.prelogits_hist_max, dataset_train, ) stat['time_train'][epoch - 1] = time.time() - t print("------------------Accuracy-----------------" + str(stat['val_accuracy'])) if not cont: break t = time.time() if len(val_image_list) > 0 and ((epoch - 1) % args.validate_every_n_epochs == args.validate_every_n_epochs - 1 or epoch == args.max_nrof_epochs): validate(args, sess, epoch, val_label_list, phase_train_placeholder, batch_size_placeholder, stat, total_loss, cross_entropy_mean, accuracy, args.validate_every_n_epochs, image_batch_plh, label_batch_plh, dataset_val) stat['time_validate'][epoch - 1] = time.time() - t cur_val_acc = get_val_acc(epoch, stat, args.validate_every_n_epochs) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, epoch, args.save_every, cur_val_acc, biggest_acc, args.save_best) biggest_acc = update_biggest_acc(biggest_acc, cur_val_acc) print('Saving statistics') with h5py.File(stat_file_name, 'w') as f: for key, value in stat.items(): f.create_dataset(key, data=value) return model_dir
def main(args): """basic info""" log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), "logs") if not os.path.isdir(log_dir): os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.logs_base_dir), "models") if not os.path.isdir(model_dir): os.makedirs(model_dir) argumentfile = os.path.join(log_dir, 'arguments.txt') utils.write_arguments_to_file(args, argumentfile) src_path, _ = os.path.split(os.path.realpath(__file__)) # utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) """trainset""" # np.random.seed(seed=args.seed) train_set = utils.get_dataset(args.data_path, classnum, argumentfile) """开启图""" with tf.Graph().as_default(): # tf.set_random_seed(args.seed) """占位符""" batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 1), name='image_paths') labels_placeholder = tf.placeholder(tf.int64, shape=(None, 1), name='labels') """通过队列读取批量数据""" input_queue = data_flow_ops.FIFOQueue(capacity=1000, dtypes=[tf.string, tf.int64], shapes=[(1, ), (1, )], shared_name=None, name=None) enqueue_op = input_queue.enqueue_many( [image_paths_placeholder, labels_placeholder]) nrof_preprocess_threads = 17 images_and_labels = [] for _ in range(nrof_preprocess_threads): filenames, label = input_queue.dequeue() # 路径、标签出队 images = [] for filename in tf.unstack(filenames): file_contents = tf.read_file(filename) image = tf.image.decode_image( file_contents, channels=1) # uint8 with shape [h, w, num_channels] image = tf.image.crop_to_bounding_box(image, 0, 0, 850, 2100) image = tf.image.resize_images( image, (args.image_size_h, args.image_size_w), method=1) if args.transform: if random.random() < 1: height, width, d = image.shape mask = utils.geterasebox(height, width) image = tf.multiply(image, mask) image = tf.cast(image, tf.float32) images.append(image) images_and_labels.append([images, label]) image_batch, labels_batch = tf.train.batch_join( images_and_labels, batch_size=batch_size_placeholder, shapes=[(args.image_size_h, args.image_size_w, 1), ()], enqueue_many=True, capacity=4 * nrof_preprocess_threads * args.batch_size, allow_smaller_final_batch=False) tf.summary.image("trainimage", image_batch, max_outputs=16) # 阶梯下降学习率 with tf.name_scope("lr"): global_step = tf.Variable(0, name='global_step', trainable=False) learning_rate = tf.train.piecewise_constant(global_step, boundaries=boundaries, values=learning_rates) """运行网络 输出特征向量""" model = DentNet_ATT.DentNet_ATT(image_batch, classnum, True) embeddings = model.dropout2 Cosin_logits = cosineface_losses(embedding=embeddings, labels=labels_batch, out_num=classnum) # loss with tf.name_scope("loss"): cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels_batch, logits=Cosin_logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') L2_loss = tf.add_n( [tf.nn.l2_loss(var) for var in tf.trainable_variables()]) * 0.001 #0.001需要对比设置 total_loss = tf.add_n([cross_entropy_mean + L2_loss * weightdecay], name='total_loss') # optimizer with tf.name_scope('optimizer'): if args.opt == 'ADAGRAD': optimizer = tf.train.AdagradOptimizer(learning_rate) elif args.opt == 'ADADELTA': optimizer = tf.train.AdadeltaOptimizer(learning_rate, rho=0.9, epsilon=1e-6) elif args.opt == 'ADAM': optimizer = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1) elif args.opt == 'RMSPROP': optimizer = tf.train.RMSPropOptimizer(learning_rate, decay=0.9, momentum=0.9, epsilon=1.0) elif args.opt == 'MOM': optimizer = tf.train.MomentumOptimizer(learning_rate, 0.95, use_nesterov=True) else: raise ValueError('Invalid optimization algorithm') train_op = optimizer.minimize(total_loss, global_step=global_step) # accuracy 计算准确度 with tf.name_scope("total_accuracy"): prob = tf.nn.softmax(Cosin_logits) one_hot_label = tf.one_hot(labels_batch, classnum) correct_pred = tf.equal(tf.argmax(prob, 1), tf.argmax(one_hot_label, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # Tensorboard tf.summary.scalar('loss', total_loss) tf.summary.scalar('accuracy', accuracy) tf.summary.scalar('lr', learning_rate) saver = tf.train.Saver(max_to_keep=200) summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(log_dir) """开启session""" with tf.Session() as sess: sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) if args.param_num: count_params() summary_writer.add_graph(sess.graph) # 把图的数据写入 # Training epoch = 0 while epoch < args.max_nrof_epochs: batch_number = 0 # 一代内的步数 while batch_number < args.epoch_size: """选择训练样本""" thestep = sess.run(global_step) image_paths, num_per_class, batch_truelabel = sample_people( train_set, args.people_per_batch, args.images_per_person, log_dir, thestep) nrof_examples = args.people_per_batch * args.images_per_person image_paths_array = np.reshape( np.expand_dims(np.array(image_paths), 1), (-1, 1)) sess.run( enqueue_op, { image_paths_placeholder: image_paths_array, labels_placeholder: batch_truelabel }) nrof_batches = int(np.ceil(nrof_examples / args.batch_size)) """计算特征向量""" for i in range(nrof_batches): batch_size = min(nrof_examples - i * args.batch_size, args.batch_size) emb, lab, err, _, ministep, acc, s, lrr = sess.run( [ embeddings, labels_batch, total_loss, train_op, global_step, accuracy, summary_op, learning_rate ], feed_dict={ batch_size_placeholder: batch_size, phase_train_placeholder: True }) if (ministep + 1) % 100 == 0: timenow = str(time.strftime('%Y-%m-%d %H:%M:%S')) print(timenow, "step:", ministep + 1, "lr:", lrr, "Loss:", err, "TrainAcc:", acc) summary_writer.add_summary(s, ministep) # save model checkpoint_name = os.path.join( model_dir, 'models-step' + str(ministep + 1) + '.ckpt') if (ministep + 1) % 1000 == 0: print("Saving checkpoint of model:", checkpoint_name) saver.save(sess, checkpoint_name) batch_number += 1 epoch += 1 return