from losses.confusion_loss import confusion_loss from losses.dice_loss import dice_loss import torch.optim as optim from train_utils_segmentation import train_encoder_domain_unlearn_semi, val_encoder_domain_unlearn_semi, train_unlearn_semi, val_unlearn_semi import sys ######################################################################################################################## # Create an args class args = Args() args.channels_first = True args.epochs = 300 args.batch_size = 4 args.diff_model_flag = False args.alpha = 50 args.patience = 100 cuda = torch.cuda.is_available() LOAD_PATH_UNET = None LOAD_PATH_SEGMENTER = None LOAD_PATH_DOMAIN = None PRETRAIN_UNET = 'pretrain_unet' PATH_UNET = 'unet_pth' CHK_PATH_UNET = 'unet_pth_checkpoint' PATH_SEGMENTER = 'segmenter_pth' CHK_PATH_SEGMENTER = 'segmenter_pth_checkpoint' PRETRAIN_SEGMENTER = 'pretrain_segmenter' PATH_DOMAIN = 'domain_pth'
import numpy as np from sklearn.utils import shuffle from utils import Args, EarlyStopping_unlearning from losses.confusion_loss import confusion_loss import torch.optim as optim from train_utils import train_unlearn_distinct, val_unlearn_distinct, val_encoder_domain_unlearn_distinct, train_encoder_domain_unlearn_distinct import sys ######################################################################################################################## # Create an args class args = Args() args.channels_first = True args.epochs = 300 args.batch_size = 16 args.diff_model_flag = False args.alpha = 1 args.patience = 150 args.learning_rate = 1e-4 LOAD_PATH_ENCODER = None LOAD_PATH_REGRESSOR = None LOAD_PATH_DOMAIN = None PRE_TRAIN_ENCODER = 'pretrain_encoder' PATH_ENCODER = 'encoder_pth' CHK_PATH_ENCODER = 'encoder_chk_pth' PRE_TRAIN_REGRESSOR = 'pretrain_regressor' PATH_REGRESSOR = 'regressor_pth' CHK_PATH_REGRESSOR = 'regressor_chk_pth' PRE_TRAIN_DOMAIN = 'pretrain_domain' PATH_DOMAIN = 'domain_pth'