def predict(args): device = torch.device(args.device) cls_embed = torch.load(args.embedding_save_path) model = textCNN(args.embedding_size, args.cls_num, args.l1_channels_num) model.load_state_dict(torch.load(args.model_save_path)) model.eval() model = model.to(device) cls_embed = cls_embed.to(device) cls_embed.eval() dev_dataset = DataSet(args.predict_data, None, args.batch_size) dev_dataset.reorderForEval() towrite = open(args.predict_writeto, "w+") towrite.write("idx,labels\n") idx = 0 print("Begin Predict task...") while (True): (example, dump), p = dev_dataset.getPredictBatch(False) example = cls_embed(example, device=device) # print(example.size()) outs = model(example) outs = (torch.argmax(outs, -1) + 1).squeeze().tolist() for out in zip(example[1], outs): towrite.write("{0},{1}\n".format(out[0], int(out[1]))) idx += 1 if (p): break towrite.close() print("Predict task Done!")
def predict(args): device = torch.device(args.device) cls_embed = torch.load(args.embedding_save_path) model = textCNN(args.embedding_size, args.cls_num, args.l1_channels_num) model.load_state_dict(torch.load(args.model_save_path)) model.eval() model = model.to(device) cls_embed = cls_embed.to(device) cls_embed.eval() dev_dataset = DataSet(args.predict_data, None, args.batch_size) towrite = open(args.predict_writeto, "w+") towrite.write("idx,labels\n") idx = 0 print("Begin Predict task...") while (True): example, p = dev_dataset.getPredictBatch() example = cls_embed(example, device=device) # print(example.size()) out = model(example) out = torch.argmax(out, -1).item() + 1 towrite.write("{0},{1}\n".format(idx, out)) idx += 1 if (p): break towrite.close() print("Predict task Done!")
def read_data_sets(validation_size=0.1): test_images = np.array([el['img'] for el in test_data]) test_labels = np.array([el['label'] for el in test_data]) test_labels = np.eye(meta['n_classes'])[test_labels] train_images = np.array([el['img'] for el in train_data]) train_labels = np.array([el['label'] for el in train_data]) train_labels = np.eye(meta['n_classes'])[train_labels] if 0 <= validation_size < 1.0: validation_size = int(validation_size * len(train_images)) if not 0 <= validation_size <= len(train_images): raise ValueError( 'Validation size should be between 0 and {}. Received: {}.' .format(len(train_images), validation_size)) # Shuffle data perm = np.arange(len(train_labels)) np.random.shuffle(perm) train_images = train_images[perm] train_labels = train_labels[perm] # Split training set in training and validation set validation_images = train_images[:validation_size] validation_labels = train_labels[:validation_size] train_images = train_images[validation_size:] train_labels = train_labels[validation_size:] train = DataSet(train_images, train_labels, dtype=np.float32) validation = DataSet(validation_images, validation_labels, dtype=np.float32) test = DataSet(test_images, test_labels, dtype=np.float32) return base.Datasets(train=train, validation=validation, test=test)
def main(): imgs = tf.placeholder(tf.float32, [None, IMAGE_WIDTH * IMAGE_HEIGHT]) keys = tf.placeholder(tf.float32, [None, N_CLASS]) train_model = create_CNN(imgs, Weight_Dicts, Biases_Dict, Dropout_Dict) # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(train_model, keys)) optimizer = tf.train.AdamOptimizer(0.01).minimize(cost) # Evaluate the train model correct_model = tf.equal(tf.argmax(train_model, 1), tf.argmax(keys, 1)) accuracy = tf.reduce_mean(tf.cast(correct_model, tf.float32)) init = tf.initialize_all_variables() obj = DataSet() obj.load() with tf.Session() as sess: sess.run(init) step = 1 while step * BATCH_SIZE < TRAINING_ITERS: batch_imgs, batch_keys = obj.next_batch(BATCH_SIZE) sess.run(optimizer, feed_dict = {imgs : batch_imgs, keys : batch_keys}) if step % DISPLAY_STEP == 0: acc = sess.run(accuracy, feed_dict = {imgs : batch_imgs, keys : batch_keys}) loss = sess.run(cost, feed_dict = {imgs : batch_imgs, keys : batch_keys}) print "Iter " + str(step * BATCH_SIZE) + ", MiniBatch Loss = " + "{:.6f}".format(loss) + ", Training Accuracy = " + "{:.5f}".format(acc) step = step + 1
def __init__(self, args): self.args = {} self.args['dataset'] = args.dataset_name self.args["batch_size"] = args.batch_size self.args['cuda'] = args.cuda self.args['device'] = args.device self.args['epoch'] = args.epoch self.args['in_length'] = args.obs_length self.args['out_length'] = args.pred_length self.args['save_name'] = args.save_name self.args['load_name'] = args.load_name # self.args['nll_only'] = True self.args["learning_rate"] = 1e-4 self.args["w_decay"] = 1e-4 self.args['name'] = 'test.tar' self.args["optim"] = 'Adam' self.args['train_loss'] = 'MSE' self.wandb = False if args.wandb: self.wandb = True print("Wandb is initialized...") wandb.init(project="vanilla_gru",\ # name="obs: {}, pred: {}".format(args.obs_length, args.pred_length), config=self.args) self.net = NNPred(args) if self.args['cuda']: self.net = self.net.cuda(self.args['device']) # for training// dataset self.train_dataset = DataSet(args, 'train') self.val_dataset = DataSet(args, 'val') self.test_dataset = DataSet(args, 'test') # for i in range(12300, 12500): # hist, hist_mask, fut, fut_mask, ref_pose, AgentInfo = self.test_dataset[0] # print(AgentInfo) # print(hist) # print(fut) # # A = fut+ref_pose#// These lines for # # A[:,0] = ((A[:,0]+1)/2)*(self.test_dataset.max_position_x - self.test_dataset.min_position_x)+ self.test_dataset.min_position_x # # A[:,1] = ((A[:,1]+1)/2)*(self.test_dataset.max_position_y - self.test_dataset.min_position_y)+ self.test_dataset.min_position_y # print(A) # # print(fut[:,1]+ref_pose[1]) # quit() self.trainDataloader = DataLoader(self.train_dataset, batch_size=self.args["batch_size"], shuffle=True, \ num_workers=6, collate_fn=self.train_dataset.GetBatch, drop_last=True) # print("trainDataloader completed!") self.valDataloader = DataLoader(self.val_dataset, batch_size=self.args["batch_size"], shuffle=True, \ num_workers=6, collate_fn=self.val_dataset.GetBatch, drop_last=True) # print("valDataloader completed!") self.testDataloader = DataLoader(self.test_dataset, batch_size=self.args["batch_size"], shuffle=True, \ num_workers=6, collate_fn=self.test_dataset.GetBatch, drop_last=True)
def analyze_result(self, paths): image_paths = sorted(glob(os.path.join(paths, '*'))) image, wides = DataSet().get_imges(image_paths) def getlab(x): result = x.split('_')[-1].replace('.jpg', '') result = result.replace('.png', '') return result labels = map(getlab, image_paths) inputs = tf.placeholder(tf.float32, [None, 32, None, 1]) width = tf.placeholder(tf.int32, [None]) is_training = tf.placeholder(tf.bool) logits, sequence_length = self.crnn(inputs, width, is_training) decoder, probably = tf.nn.ctc_greedy_decoder(logits, sequence_length, merge_repeated=True) decoder = decoder[0] dense_decoder = tf.sparse_to_dense(sparse_indices=decoder.indices, output_shape=decoder.dense_shape, sparse_values=decoder.values, default_value=-1) with tf.Session() as sess: saver = tf.train.Saver(tf.global_variables()) saver.restore(sess, config.MODEL_SAVE) result = [] if image.shape[0] <= config.BATCH_SIZE: sentence = sess.run(dense_decoder, feed_dict={inputs: image, width: wides, is_training: False}) sentence = sentence.tolist() decode = dict(zip(config.ONE_HOT.values(), config.ONE_HOT.keys())) result.extend(sentence) else: index = 0 while (index + 1) * config.BATCH_SIZE <= image.shape[0]: if (index + 1) * config.BATCH_SIZE > image.shape[0]: end = image.shape[0] else: end = (index + 1) * config.BATCH_SIZE sentence = sess.run(dense_decoder, feed_dict={inputs: image[index * config.BATCH_SIZE:end, ...], width: wides[index * config.BATCH_SIZE:end, ...], is_training: True}) sentence = sentence.tolist() decode = dict(zip(config.ONE_HOT.values(), config.ONE_HOT.keys())) result.extend(sentence) index = index + 1 result = list(map(lambda y: ''.join(list(map(lambda x: decode.get(x), y))), result)) result = dict(zip(labels, result)) print(result)
def run_sc_train(config): """Load problem.""" if not os.path.exists(config.probfn): raise ValueError("Problem file not found.") else: p = problem.load_problem(config.probfn) """Set up model.""" model = setup_model(config, A=p.A) # Create target Directory if don't exist dirName = config.modelfn if not os.path.exists(dirName): os.mkdir(dirName) print("Directory ", dirName, " Created ") else: print("Directory ", dirName, " already exists") # model.weights[2].assign(2 * model.weights[2].numpy()) model.weights[2].assign((1234.0, 567.0)) model.weights[3].assign((1234.0, 567.0)) model.save_weights(config.modelfn + '/ckpt') print('model weights ... ') print(model.weights[2]) print(model.weights[3]) loaded_model = setup_model(config, A=p.A) loaded_model.load_weights(config.modelfn + '/ckpt') print('loaded model weights ... ') print(loaded_model.weights[2]) print(loaded_model.weights[3]) # loaded_model.load_weights('ckpt') # model.load_weights('my_model.h5', by_name=False, skip_mismatch=False) """Set up input.""" config.SNR = np.inf if config.SNR == 'inf' else float(config.SNR) data_set = DataSet.DataSet(config, p) """Set up training.""" stages = train.setup_sc_training(model, data_set, None, config.init_lr, config.decay_rate, config.lr_decay) tfconfig = tf.compat.v1.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True # start timer start = time.time() # train model model.do_training(stages, data_set, config.modelfn, config.scope, config.val_step, config.maxit, config.better_wait) # end timer end = time.time() elapsed = end - start print("elapsed time of training = " + str(timedelta(seconds=elapsed)))
def readDataSetFile(filename, F): with open(filename) as f: E = DataSet() for line in f: line =line.split() if len(line) != len(F): print("Number of attributes in the Training record:"+str(line)+"does not match the number in the attribute file") raise Exception('DataValidation') d = Data() idx= 0 for value in ine: if value in F[idx].values: d.addValue(F[idx].name,value) else: print('Value='+value+' is not a valid value for attribute='+ F[idx].name) idx += 1 E.addData(d) f.close()
def train(config): model = SelfAttNet(config) model.train() dataset = DataSet(cofig) for epoch in range(config.num_epochs): for data in dataset: train_x, train_y = data train_x = Variable(convert_words(train_x)) true_y = Variable(train_y) emb_x, P = model(train_x)
def main(): imgs = tf.placeholder(tf.float32, [None, IMAGE_WIDTH * IMAGE_HEIGHT]) keys = tf.placeholder(tf.float32, [None, N_CLASS]) train_model = create_CNN(imgs, Weight_Dicts, Biases_Dict, Dropout_Dict) # Define loss and optimizer cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(train_model, keys)) optimizer = tf.train.AdamOptimizer(0.01).minimize(cost) # Evaluate the train model correct_model = tf.equal(tf.argmax(train_model, 1), tf.argmax(keys, 1)) accuracy = tf.reduce_mean(tf.cast(correct_model, tf.float32)) init = tf.initialize_all_variables() obj = DataSet() obj.load() with tf.Session() as sess: sess.run(init) step = 1 while step * BATCH_SIZE < TRAINING_ITERS: batch_imgs, batch_keys = obj.next_batch(BATCH_SIZE) sess.run(optimizer, feed_dict={imgs: batch_imgs, keys: batch_keys}) if step % DISPLAY_STEP == 0: acc = sess.run(accuracy, feed_dict={ imgs: batch_imgs, keys: batch_keys }) loss = sess.run(cost, feed_dict={ imgs: batch_imgs, keys: batch_keys }) print "Iter " + str( step * BATCH_SIZE) + ", MiniBatch Loss = " + "{:.6f}".format( loss) + ", Training Accuracy = " + "{:.5f}".format(acc) step = step + 1
def main(*args): # Hyper parameters learning_rate = 0.001 training_steps = 10000 valid_step = 50 cell_size = 256 num_rnn_layers = 1 dataset = DataSet(FLAGS.dataset) model = Model(dataset.samples_shape[1], dataset.labels_shape[1], dataset.labels_shape[2], cell_size, num_rnn_layers, learning_rate, cell_type='lstm') with tf.Session() as sess: tf.global_variables_initializer().run() loss = [] for step in range(training_steps): train_samples, train_labels, train_weights = dataset.get_batch(FLAGS.batch_size, 'train') train_labels_T = np.transpose(train_labels, (1, 0, 2)) _loss, prediction = model.step(train_samples, train_labels_T, train_weights, sess) # loss.append(_loss) if (step % valid_step) == 0: # print("Average training loss: %s" % np.mean(loss)) # loss = [] valid_samples, valid_labels, valid_weights = dataset.get_batch(FLAGS.batch_size, 'valid') valid_labels_T = np.transpose(valid_labels, (1, 0, 2)) v_loss, v_prediction = model.step(valid_samples, valid_labels_T, valid_weights, sess, valid=True) print("Valid loss @ step %s: %s" % (step,v_loss)) for p in v_prediction: pred = decode_ohe(p) cleaned_pred = clean_prediction(pred) print(cleaned_pred)
def output(self, path): image, wides = DataSet().get_imges([path]) inputs = tf.placeholder(tf.float32, [None, 32, None, 1]) width = tf.placeholder(tf.int32, [None]) is_training = tf.placeholder(tf.bool) logits, sequence_length = self.crnn(inputs, width, is_training) decoder_greey, probably_greedy = tf.nn.ctc_greedy_decoder( logits, sequence_length, merge_repeated=True) with tf.device('/cpu:0'): decoders, probably = tf.nn.ctc_beam_search_decoder( logits, sequence_length, beam_width=20, top_paths=5, merge_repeated=False) decoder_list = [] for decoder in decoders: dense_decoder = tf.sparse_to_dense( sparse_indices=decoder.indices, output_shape=decoder.dense_shape, sparse_values=decoder.values, default_value=-1) decoder_list.append(dense_decoder) # classs = tf.argmax(logits,-1) # classs = tf.squeeze(classs,axis=-1) logits = tf.nn.softmax(logits) # classs = tf.nn.top_k(logits,10) with tf.Session() as sess: saver = tf.train.Saver(tf.global_variables()) saver.restore(sess, config.MODEL_SAVE) t1 = time.time() decoder_list, logits_, probably_ = sess.run( [decoder_list, logits, probably], feed_dict={ inputs: image, width: wides, is_training: False }) t2 = time.time() print(t2 - t1) t3 = time.time() _, _ = sess.run([decoder_greey, logits], feed_dict={ inputs: image, width: wides, is_training: False }) t4 = time.time() print(t4 - t3) t5 = time.time() logits_ = sess.run(logits, feed_dict={ inputs: image, width: wides, is_training: False }) logits_ = logits_[:, 0, :] logits_ = logits_[:, config.NUM_SIGN] decoder_cpu = beam_search_decoder(logits_, 5) t6 = time.time() print(t6 - t5) for result in decoder_cpu: def get_char(num): return config.DECODE[num] result_0 = map(get_char, result[0]) print(''.join(result_0)) print(result[1]) print( '------------------------------------------------------------------------------------------------------------' ) decode = dict(zip(config.ONE_HOT.values(), config.ONE_HOT.keys())) result_list = [] for sentence in decoder_list: sentence = sentence.tolist() result = ''.join( list(map(lambda x: decode.get(x), sentence[0]))) result_list.append(result) for i, result in enumerate(result_list): print(result)
def train_vectors(options, sens=None): # check vectors and ckpt checkpoint = '0' train_vec_dir = os.path.split(options.vectors_path)[0] ckpt_dir = os.path.join(train_vec_dir, 'ckpt') ckpt = tf.train.get_checkpoint_state(ckpt_dir) if ckpt and ckpt.model_checkpoint_path: cur_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] logger.info( "model and vectors already exists, checkpoint step = {}".format( cur_step)) checkpoint = input( "please input 0 to start a new train, or input a choosed ckpt to restore (-1 for latest ckpt)" ) if checkpoint == '0': if ckpt: tf.gfile.DeleteRecursively(ckpt_dir) logger.info('start a new embedding train using tensorflow ...') elif checkpoint == '-1': logger.info( 'restore a embedding train using tensorflow from latest ckpt...') else: logger.info( 'restore a embedding train using tensorflow from ckpt-%s...' % checkpoint) if not os.path.exists(train_vec_dir): os.makedirs(train_vec_dir) if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) # generate training examples logger.info("Generate training examples:") idx_vocab_freq_file = os.path.join(train_vec_dir, 'vocab.freq') logger.info('\t corpus_store_path = {}'.format(options.corpus_store_path)) logger.info( '\t vocab and frequencies file = {}'.format(idx_vocab_freq_file)) logger.info('\t walk_workers to load dataset = {}'.format( options.walk_workers)) logger.info('\t window_size = {}'.format(options.window_size)) data, labels, idx2vocab, nodes_frequencies = generate_train_data( options.corpus_store_path, options.headflag_of_index_file, options.walk_workers, options.window_size, idx_vocab_freq_file, sens=sens, always_rebuild=options.always_rebuild) del sens gc.collect() dataset = DataSet(data=data, labels=labels, shuffled=not options.unshuffled) lr_file = os.path.join(train_vec_dir, "lr.info") np.savetxt( lr_file, np.asarray( [options.learning_rate, options.decay_epochs, options.decay_rate], dtype=np.float32), fmt="%.6f") # train info logger.info('Train info:') logger.info('\t total embedding nodes = {}'.format(len(idx2vocab))) logger.info('\t total training examples = {}'.format(len(data))) logger.info('\t shuffled in training = {}'.format(not options.unshuffled)) logger.info('\t embedding size = {}'.format(options.embedding_size)) logger.info('\t window size = {}'.format(options.window_size)) logger.info('\t negative = {}'.format(options.negative)) logger.info('\t distortion_power = {}\n'.format(options.distortion_power)) logger.info('\t batch_size = {}'.format(options.batch_size)) logger.info('\t iter_epoches = {}'.format(options.iter_epoches)) logger.info('\t init_learning_rate = {}'.format(options.learning_rate)) logger.info('\t decay_epochs = {}'.format(options.decay_epochs)) logger.info('\t decay_interval = {}'.format(options.decay_interval)) logger.info('\t decay_rate = {}'.format(options.decay_rate)) logger.info('\t loss_interval = {}s'.format(options.loss_interval)) logger.info('\t summary_steps = {}'.format(options.summary_steps)) logger.info('\t summary_interval = {}s'.format(options.summary_interval)) logger.info('\t ckpt_epochs = {}'.format(options.ckpt_epochs)) logger.info('\t ckpt_interval = {}s\n'.format(options.ckpt_interval)) logger.info('\t using_gpu = {}'.format(options.using_gpu)) logger.info('\t visible_device_list = {}'.format( options.visible_device_list)) logger.info('\t log_device_placement = {}'.format( options.log_device_placement)) logger.info('\t allow_soft_placement = {}'.format( options.allow_soft_placement)) logger.info('\t gpu_memory_fraction = {}'.format( options.gpu_memory_fraction)) logger.info('\t gpu_memory_allow_growth = {}'.format(options.allow_growth)) logger.info('\t train_workers = {}\n'.format(options.train_workers)) logger.info('\t ckpt_dir = {}'.format(ckpt_dir)) logger.info('\t vectors_path = {}'.format(options.vectors_path)) logger.info('\t learning_rate_path = {}'.format(lr_file)) fr_vec = open(os.path.join(train_vec_dir, 'embedding.info'), 'w') fr_vec.write('embedding info:\n') fr_vec.write('\t corpus_store_path = {}\n'.format( options.corpus_store_path)) fr_vec.write( '\t vocab and frequencies file = {}\n'.format(idx_vocab_freq_file)) fr_vec.write('\t total embedding nodes = {}\n'.format(len(idx2vocab))) fr_vec.write('\t total training examples = {}\n'.format(len(data))) fr_vec.write( '\t shuffled in training = {}\n'.format(not options.unshuffled)) fr_vec.write('\t embedding size = {}\n'.format(options.embedding_size)) fr_vec.write('\t window size = {}\n'.format(options.window_size)) fr_vec.write('\t negative = {}\n'.format(options.negative)) fr_vec.write('\t distortion_power = {}\n\n'.format( options.distortion_power)) fr_vec.write('\t batch_size = {}\n'.format(options.batch_size)) fr_vec.write('\t iter_epoches = {}\n'.format(options.iter_epoches)) fr_vec.write('\t init_learning_rate = {}\n'.format(options.learning_rate)) fr_vec.write('\t decay_epochs = {}\n'.format(options.decay_epochs)) fr_vec.write('\t decay_interval = {}\n'.format(options.decay_interval)) fr_vec.write('\t decay_rate = {}\n'.format(options.decay_rate)) fr_vec.write('\t loss_interval = {}s\n'.format(options.loss_interval)) fr_vec.write('\t summary_steps = {}\n'.format(options.summary_steps)) fr_vec.write('\t summary_interval = {}s\n'.format( options.summary_interval)) fr_vec.write('\t ckpt_epochs = {}\n'.format(options.ckpt_epochs)) fr_vec.write('\t ckpt_interval = {}s\n\n'.format(options.ckpt_interval)) fr_vec.write('\t using_gpu = {}\n'.format(options.using_gpu)) fr_vec.write('\t visible_device_list = {}\n'.format( options.visible_device_list)) fr_vec.write('\t log_device_placement = {}\n'.format( options.log_device_placement)) fr_vec.write('\t allow_soft_placement = {}\n'.format( options.allow_soft_placement)) fr_vec.write('\t gpu_memory_fraction = {}\n'.format( options.gpu_memory_fraction)) fr_vec.write('\t gpu_memory_allow_growth = {}\n'.format( options.allow_growth)) fr_vec.write('\t train_workers = {}\n\n'.format(options.train_workers)) fr_vec.write('\t ckpt_dir = {}\n'.format(ckpt_dir)) fr_vec.write('\t vectors_path = {}\n'.format(options.vectors_path)) fr_vec.write('\t learning_rate_path = {}\n'.format(lr_file)) fr_vec.close() visible_devices = str(options.visible_device_list[0]) for dev in options.visible_device_list[1:]: visible_devices = visible_devices + ',%s' % dev os.environ['CUDA_VISIBLE_DEVICES'] = visible_devices # train logger.info('training...') time_start = time.time() train(dataset=dataset, vectors_path=options.vectors_path, lr_file=lr_file, ckpt_dir=ckpt_dir, checkpoint=checkpoint, idx2vocab=idx2vocab, vocab_unigrams=nodes_frequencies, embedding_size=options.embedding_size, neg_sampled=options.negative, distortion_power=options.distortion_power, batch_size=options.batch_size, initial_learning_rate=options.learning_rate, decay_epochs=options.decay_epochs, decay_rate=options.decay_rate, iter_epochs=options.iter_epoches, allow_soft_placement=options.allow_soft_placement, log_device_placement=options.log_device_placement, gpu_memory_fraction=options.gpu_memory_fraction, using_gpu=options.using_gpu, allow_growth=options.allow_growth, loss_interval=options.loss_interval, summary_steps=options.summary_steps, ckpt_interval=options.ckpt_interval, ckpt_epochs=options.ckpt_epochs, summary_interval=options.summary_interval, decay_interval=options.decay_interval, train_workers=options.train_workers) logger.info('train completed in {}s'.format(time.time() - time_start)) return
lambda_f = 0.04 k_of_knn = 10 m_of_knn = 50 SEED = 666 np.random.seed(SEED) data_dict = sio.loadmat('MNIST') # normalization samples = data_dict['fea'] / 256 labels = dense_to_one_hot(data_dict['gnd'], num_classes) # 有标记数据 # l_index = np.random.randint(5000, size=labeled_data_size) l_index = equal_proportion_sampling(data_dict['gnd'][:5000], num_classes, labeled_data_size) l_dataset = DataSet(samples[l_index], labels[l_index]) # 无标记数据 # u_index = np.arange(5000, 60000) u_index = np.random.randint(5000, 60000, size=2000) uindex_dataset = DataSet(u_index, labels[u_index]) sample_data = np.vstack((samples[l_index], samples[u_index])) sample_label = np.vstack((labels[l_index], labels[u_index])) # 测试数据 test_dataset = DataSet(samples[60000:], labels[60000:]) neighborIndex, remoteIndex, RBF_matrix = find_neighbors( samples, l_index,
def run_sc_test(config): """ Test model. """ """Load problem.""" if not os.path.exists(config.probfn): raise ValueError("Problem file not found.") else: p = problem.load_problem(config.probfn) """Load testing data.""" xt = np.load(config.xtest) """Set up input for testing.""" config.SNR = np.inf if config.SNR == 'inf' else float(config.SNR) data_set = DataSet.DataSet(config, p) input_, label_ = (train.setup_input_sc(config.test, p, xt.shape[1], None, False, config.supp_prob, config.SNR, config.magdist, **config.distargs)) """Set up model.""" model = setup_model(config, A=p.A) xhs_ = model.inference(input_, None) """Create session and initialize the graph.""" tfconfig = tf.compat.v1.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True with tf.compat.v1.Session(config=tfconfig) as sess: # graph initialization sess.run(tf.compat.v1.global_variables_initializer()) # load model model.load_trainable_variables(config.modelfn) nmse_denom = np.sum(np.square(xt)) supp_gt = xt != 0 lnmse = [] lspar = [] lsperr = [] lflspo = [] lflsne = [] # test model for xh_ in xhs_: xh = sess.run(xh_, feed_dict={label_: xt}) # nmse: loss = np.sum(np.square(xh - xt)) nmse_dB = 10.0 * np.log10(loss / nmse_denom) print(nmse_dB) lnmse.append(nmse_dB) supp = xh != 0.0 # intermediate sparsity spar = np.sum(supp, axis=0) lspar.append(spar) # support error sperr = np.logical_xor(supp, supp_gt) lsperr.append(np.sum(sperr, axis=0)) # false positive flspo = np.logical_and(supp, np.logical_not(supp_gt)) lflspo.append(np.sum(flspo, axis=0)) # false negative flsne = np.logical_and(supp_gt, np.logical_not(supp)) lflsne.append(np.sum(flsne, axis=0)) res = dict(nmse=np.asarray(lnmse), spar=np.asarray(lspar), sperr=np.asarray(lsperr), flspo=np.asarray(lflspo), flsne=np.asarray(lflsne)) np.savez(config.resfn, **res)
def train(args): device = torch.device(args.device) cls_embed = ModelEmbeddings.load_from_file(args.pretrain_vector) train_data = DataSet(args.train_data, args.train_labels, args.batch_size, int(1e7)) train_data.reorderForEval() # train_data.padtoMaxLen() print('loading dev set...') # devSet,devlabels,devNum=DataSet.load_devSet(args.dev_data,args.dev_labels) dev_dataset = DataSet(args.dev_data, args.dev_labels, args.batch_size, int(1e7)) dev_dataset.reorderForEval() print('Done dev loading.') model = textCNN(args.embedding_size, args.cls_num, args.l1_channels_num) model.train() model = model.to(device) cls_embed.train() cls_embed = cls_embed.to(device) optimizer = torch.optim.Adam([{ 'params': model.parameters() }, { 'params': cls_embed.parameters(), 'lr': 1.75 * args.lr }], lr=float(args.lr)) Loss_fun = torch.nn.CrossEntropyLoss(reduction='sum') print('begin Maximum Likelihood training') epoch = 0 sum_loss = 0 step = 0 tot_step = 0 pi_2 = np.pi / 2 while (True): optimizer.zero_grad() if (args.use_cos_batch and epoch): for param_group in optimizer.param_groups: param_group['lr'] = args.lr * np.cos(pi_2 * (step / tot_step)) example, p = train_data.getTestBatch() t = example[0] l = example[1] example = None l = torch.tensor(l, device=device) # print("Doing word embed") # print(type(t)) # print(type(l)) # print(l.requires_grad) t = cls_embed(t, device=device) # t=t.detach() # print("Done word embed") # print("feed into model...") outPuts = model(t) # print("Get answer!") # print("Caluating Loss") # print(outPuts.size()) # print(l.size()) # print(l) # print(outPuts) loss = Loss_fun(outPuts, l) loss.backward() optimizer.step() loss /= len(outPuts) sum_loss += loss print("epoch:{0},step:{1},train loss:{2}".format(epoch, step, loss)) step += 1 # print("Doing backPro") # print("Done backPro") # print("Setping...") # print("Done Step!") # print('Current Batch Loss:{0}'.format(loss)) if (p): tot_step = step epoch += p print("Epoch mean Loss:{0}".format(sum_loss / step)) step = 0 sum_loss = 0 accuary, F1 = test(args, model, dev_dataset, cls_embed, args.cls_num, device) if (model.lastScore < F1): print("F1 score grow from {0} to {1}, save model...".format( model.lastScore, F1)) model.lastScore = F1 torch.save(model.state_dict(), args.model_save_path) torch.save(cls_embed, args.embedding_save_path) args.lr = args.lr * np.exp(args.lr_decay) for param_group in optimizer.param_groups: param_group['lr'] = args.lr else: args.lr = args.lr / 2 for param_group in optimizer.param_groups: param_group['lr'] = args.lr if (epoch == args.max_epoch): break
def main(): global use_gpu,device # set up some parameters batch_size=1 lr= 1e-3 logging_path= 'logging/' num_epoches= 500 epoch_to_save= 10 tsize=10 data_path= '../dataset' print('loading data sets ...') dataset_train= DataSet(datapath= data_path) loader_train= DataLoader(dataset= dataset_train, num_workers=8, batch_size=batch_size, shuffle=True) print("# of training samples: %d\n" %int(len(dataset_train))) model= RadarNet(use_gpu=use_gpu,device=device) print(model) criterion= ComLoss() # model.load_state_dict(torch.load('../logging/newest-5_8.pth')) if use_gpu: model= model.to(device) criterion.to(device) #optimizer optimizer= torch.optim.Adam(model.parameters(), lr=lr) scheduler= MultiStepLR(optimizer, milestones=[20,40,60,80], gamma=0.2) #record writer= SummaryWriter(logging_path) #start training step= 0 for epoch in range(num_epoches): scheduler.step(epoch) for param_group in optimizer.param_groups: print('learning rate %f' %param_group['lr']) for i, (input_train, target_train) in enumerate(loader_train, 0): # input size: (4,10,1,200,200) # target size: (4,10,1,200,200) model.train() model.zero_grad() optimizer.zero_grad() input_train, target_train= Variable(input_train), Variable(target_train) if use_gpu: input_train, target_train= input_train.to(device), target_train.to(device) out_train= model(input_train) loss= -criterion(target_train, out_train) loss.backward() optimizer.step() # training track model.eval() out_train= model(input_train) output_train= torch.clamp(out_train, 0, 1) print("[epoch %d/%d][%d/%d] obj: %.4f "%(epoch+1,num_epoches, i+1,len(loader_train),-loss.item()/tsize)) if step% 10 ==0: writer.add_scalar('loss', loss.item()) step+=1 # print('memory allocated: ', torch.cuda.memory_allocated(device=device)) # print('max memory allocated: ',torch.cuda.max_memory_allocated(device=device)) #save model # if epoch % epoch_to_save==0: # torch.save(model.state_dict(), os.path.join(logging_path,'net_epoch%d.pth'%(epoch+1))) torch.save(model.state_dict(), os.path.join(logging_path,'newest.pth'))
def train(args): device = torch.device(args.device) cls_embed = ModelEmbeddings.load_from_file(args.pretrain_vector) train_data = DataSet(args.train_data, args.train_labels, args.batch_size) train_data.padtoMaxLen() print('loading dev set...') devSet, devlabels, devNum = DataSet.load_devSet(args.dev_data, args.dev_labels) print('Done dev loading.') model = textCNN(args.embedding_size, args.cls_num, args.l1_channels_num) model.train() model = model.to(device) cls_embed = cls_embed.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=float(args.lr)) Loss_fun = torch.nn.CrossEntropyLoss() dev_dataset = DataSet(args.dev_data, args.dev_labels, args.batch_size) print('begin Maximum Likelihood training') epoch = 0 sum_loss = 0 step = 0 while (True): optimizer.zero_grad() t, l, p = train_data.getTrainBatch() l = torch.tensor(l, device=device) # print("Doing word embed") # print(type(t)) # print(type(l)) # print(l.requires_grad) t = cls_embed(t, device=device) # t=t.detach() # print("Done word embed") # print("feed into model...") outPuts = model(t) # print("Get answer!") # print("Caluating Loss") # print(outPuts.size()) # print(l.size()) # print(l) # print(outPuts) loss = Loss_fun(outPuts, l) sum_loss += loss print("epoch:{0},step:{1},train loss:{2}".format(epoch, step, loss)) step += 1 # print("Doing backPro") loss.backward() # print("Done backPro") # print("Setping...") optimizer.step() # print("Done Step!") # print('Current Batch Loss:{0}'.format(loss)) if (p): epoch += p print("Epoch mean Loss:{0}".format(sum_loss / step)) step = 0 sum_loss = 0 accuary, F1 = test(args, model, dev_dataset, cls_embed, args.cls_num, device) if (model.lastScore < F1): model.lastScore = F1 torch.save(model.state_dict(), args.model_save_path) torch.save(cls_embed, args.embedding_save_path) if (epoch == args.max_epoch): break
def train_bpnet(): path = "mnist" # dataset preparation X_train, y_train = load_mnist(path, "train") X_test, y_test = load_mnist(path, "t10k") # dataset defination train_data = DataSet(X_train, y_train) test_data = DataSet(X_test, y_test) # parameters defination in_size = 784 hid_size = 100 out_size = 10 batch_size = 20 epoches = 150 # model defination net = BpNet(in_size, hid_size, out_size) print(train_data.input_data.shape, train_data.target_data.shape) # determine inputs dtype x = T.dmatrix("x") y = T.dmatrix("y") # defination of the layers learning_rate = 0.1 prediction = net.forward(x) # cost function defination cost = cross_entropy_cost(prediction, y) # update the grad list_q = net.update_grad(cost, learning_rate) # apply gradient descent train = theano.function(inputs=[x, y], outputs=[cost], updates=list_q) # prediction predict = theano.function(inputs=[x], outputs=prediction) # training model loss_list = [] percentage_list = [] for k in range(epoches): Length = len(X_train) // batch_size sum_loss = 0 for j in range(Length): out_x = X_train[j * batch_size:(j + 1) * batch_size, :] out_y = y_train[j * batch_size:(j + 1) * batch_size, :] err = train(out_x, out_y) sum_loss += err[0] out_pre = predict(test_data.input_data) out_org = test_data.target_data percentage = test_data_op(out_pre, out_org) print("epoches:%d loss:%0.4f correct:%0.2f%%" % (k, sum_loss / Length, percentage * 100)) loss_list.append(sum_loss / Length) percentage_list.append(percentage) # ---------------------------------------------------------------- # save the model model_name = 'bpnet.pkt' path_save = 'bpnet' if not os.path.exists(path_save): os.mkdir(path_save) f = open(os.path.join(path_save, model_name), 'wb') pickle.dump(net, f, protocol=pickle.HIGHEST_PROTOCOL) f.close() # ---------------------------------------------------------------- # save the loss image x = np.linspace(0, len(loss_list), len(loss_list)) plt.plot(x, loss_list) plt.savefig(os.path.join(path_save, "loss.png")) plt.show() with open(os.path.join(path_save, "loss.txt"), "w") as fp: for k in range(len(loss_list)): fp.write(str(loss_list[k]) + "\n") x = np.linspace(0, len(percentage_list), len(percentage_list)) plt.plot(x, percentage_list) plt.savefig(os.path.join(path_save, "percentage.png")) plt.show() with open(os.path.join(path_save, "percentage.txt"), "w") as fp: for k in range(len(percentage_list)): fp.write(str(percentage_list[k]) + "\n")
import torch.nn.functional as F import torch.optim as optim from datetime import datetime from tensorboardX import SummaryWriter from utils import DataSet, validate, show_confMat # 自定义类 from net import Net # 导入模型 # 定义超参 EPOCH = 5 BATCH_SIZE = 24 classes_name = [str(c) for c in range(16)] # --------------------加载数据--------------------- # Indian Pines .mat文件路径(每个文件都是一个单独的类) path = os.path.join(os.getcwd(), "patch") training_dataset = DataSet(path=path, train=True) testing_dataset = DataSet(path=path, train=False) # Data Loaders train_loader = torch.utils.data.DataLoader( dataset=training_dataset, batch_size=BATCH_SIZE, shuffle=True ) test_loader = torch.utils.data.DataLoader( dataset=testing_dataset, batch_size=BATCH_SIZE, shuffle=True ) # 检查cuda是否可用
def main(): dataset = DataSet(TRAIN, DEV, [TEST])
def do_training_step(model, iteration, task_iterations, batch_size, train_images, train_labels): from time import time from utils import DataSet iteration *= task_iterations start = time() train = DataSet(train_images, train_labels) rate, factor = model['rate_factor'] learning_rate = rate / factor neurons = model['neuron_number'] x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder(tf.float32, shape=[None, 10]) # First Convolutional layer W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # Second Convolutional layer W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # Densely Connected layer W_fc1 = weight_variable([7 * 7 * 64, neurons]) b_fc1 = bias_variable([neurons]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # Dropout keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # Readout W_fc2 = weight_variable([neurons, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = tf.reduce_mean( -tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) train_step = tf.train.AdamOptimizer( learning_rate=learning_rate).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver() # defaults to saving all variables sess = tf.Session() if iteration == 0: init_op = tf.initialize_all_variables() sess.run(init_op) else: try: saver.restore(sess, model['path']) import os os.remove(model['path']) os.remove("%s.meta" % model['path']) print("Model %s correctly loaded i:%s" % (model['path'], iteration)) except Exception as e: print("No checkpoint for model %s found in iter %s\n%s" % (model['path'], iteration, e)) sys.exit(1) if not model: model = dict() t1 = time() import numpy as np step_times = np.array([]) for i in range(iteration, iteration + task_iterations): ls = time() batch_offset = i * batch_size batch = train.get_batch(batch_offset, batch_size) train_step.run(session=sess, feed_dict={ x: batch[0], y_: batch[1], keep_prob: 0.5 }) # print("Iteration %s - %s s " % (i, time()-ls)) step_times = np.append(step_times, (time() - ls)) print("Loop\n Avg: %s\n Max: %s\n Min: %s" % (step_times.mean(), step_times.max(), step_times.min())) print("Loop time %s" % (time() - t1)) save_path = saver.save(sess, "%s_%s" % (model['base_path'], iteration)) model['path'] = save_path training_accuracy = accuracy.eval(session=sess, feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0 }) model['train_accuracy'] = training_accuracy end = time() print( "Training stats:\n - Neurons's number: %s\n - Learning rate: %s\n - Model: %s\n - Time: %s\n" % \ (neurons, learning_rate, save_path, (end - start))) return model
return result def read_image(image, name): result = detect(image) draw_result(image, result) plt.imshow(image) plt.savefig(os.getcwd() + '/' + name + 'output.png') if settings.output == 1: image = cv2.imread(settings.picture_name) read_image(image, settings.picture_name[-10:]) if settings.output == 2: labels = DataSet('test').load_labels() for i in xrange(len(labels)): print labels[i]['imname'] image = cv2.imread(labels[i]['imname']) read_image(image, labels[i]['imname'][-10:]) if settings.output == 3: cap = cv2.VideoCapture(-1) ret, _ = cap.read() while ret: ret, frame = cap.read() result = detect(frame) draw_result(frame, result) cv2.imshow('Camera', frame) cv2.waitKey(wait)
def read_data(test_rate=0.1, one_hot=True): """read .dat data""" # read data true_inf = [] fake_inf = [] X = [] i = 1 filee = open('/home/summit/DDI/leftGFSK_DOWN.dat', 'rb') try: while True: if (i != 65): lines1 = filee.read(1) lines2 = filee.read(1) lines3 = filee.read(1) lines4 = filee.read(1) lines5 = filee.read(1) lines6 = filee.read(1) lines7 = filee.read(1) lines8 = filee.read(1) lines9 = filee.read(1) lines10 = filee.read(1) lines11 = filee.read(1) lines12 = filee.read(1) lines13 = filee.read(1) lines14 = filee.read(1) lines15 = filee.read(1) lines16 = filee.read(1) k1 = ord(lines1) k2 = ord(lines2) k3 = ord(lines3) k4 = ord(lines4) k5 = ord(lines5) k6 = ord(lines6) k7 = ord(lines7) k8 = ord(lines8) k9 = ord(lines9) k10 = ord(lines10) k11 = ord(lines11) k12 = ord(lines12) k13 = ord(lines13) k14 = ord(lines14) k15 = ord(lines15) k16 = ord(lines16) if k1 + k2 == 0: break X.append( joint_col(k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16)) a = np.array(X) #print(i) i = i + 1 else: data = np.array(X) data = data.reshape(data.shape[0], data.shape[1], 1) / 3. X = [] true_inf.append(data) i = 1 finally: filee.close() true_inf = np.stack(true_inf, axis=0) X = [] i = 1 filee = open('/home/summit/DDI/leftGFSK_UP.dat', 'rb') try: while True: if (i != 65): lines1 = filee.read(1) lines2 = filee.read(1) lines3 = filee.read(1) lines4 = filee.read(1) lines5 = filee.read(1) lines6 = filee.read(1) lines7 = filee.read(1) lines8 = filee.read(1) lines9 = filee.read(1) lines10 = filee.read(1) lines11 = filee.read(1) lines12 = filee.read(1) lines13 = filee.read(1) lines14 = filee.read(1) lines15 = filee.read(1) lines16 = filee.read(1) k1 = ord(lines1) k2 = ord(lines2) k3 = ord(lines3) k4 = ord(lines4) k5 = ord(lines5) k6 = ord(lines6) k7 = ord(lines7) k8 = ord(lines8) k9 = ord(lines9) k10 = ord(lines10) k11 = ord(lines11) k12 = ord(lines12) k13 = ord(lines13) k14 = ord(lines14) k15 = ord(lines15) k16 = ord(lines16) if k1 + k2 == 0: break X.append( joint_col(k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16)) a = np.array(X) #print(i) i = i + 1 else: data = np.array(X) data = data.reshape(data.shape[0], data.shape[1], 1) / 3. X = [] fake_inf.append(data) i = 1 finally: filee.close() fake_inf = np.stack(fake_inf, axis=0) # split train set and test 划分训练和数测试据集 test_split_true_inf = np.random.rand(true_inf.shape[0]) < test_rate test_split_fake_inf = np.random.rand(fake_inf.shape[0]) < test_rate test_true_inf = true_inf[test_split_true_inf, :, :, :] test_label_true_inf = np.ones([test_true_inf.shape[0]]) train_true_inf = true_inf[np.logical_not(test_split_true_inf), :, :, :] train_label_true_inf = np.ones([train_true_inf.shape[0]]) test_fake_inf = fake_inf[test_split_fake_inf, :, :, :] test_label_fake_inf = np.ones([test_fake_inf.shape[0]]) * 2 train_fake_inf = fake_inf[np.logical_not(test_split_fake_inf), :, :, :] train_label_fake_inf = np.ones([train_fake_inf.shape[0]]) * 2 test_infs = np.concatenate((test_true_inf, test_fake_inf), axis=0) train_infs = np.concatenate((train_true_inf, train_fake_inf), axis=0) test_labels = np.concatenate((test_label_true_inf, test_label_fake_inf), axis=0) train_labels = np.concatenate((train_label_true_inf, train_label_fake_inf), axis=0) if one_hot == True: test_labels = test_labels.reshape(test_labels.shape[0], 1) train_labels = train_labels.reshape(train_labels.shape[0], 1) enc = OneHotEncoder() enc.fit(test_labels) test_labels = enc.transform(test_labels).toarray() train_labels = enc.transform(train_labels).toarray() #print("test_labels") #print(test_labels) #print("test_pics") #print(test_pics) #print("train_labels") #print(train_labels) #print("train_pics") #print(train_pics) data = utils.get_data(train=DataSet(images=train_infs, labels=train_labels), test=DataSet(images=test_infs, labels=test_labels)) print("type(data) line156") print(type(data)) return data
import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), './')) import settings import models from utils import DataSet import os import time import tensorflow as tf os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import numpy as np sess = tf.InteractiveSession() model = models.Model() utils = DataSet('train') saver = tf.train.Saver( var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='yolo')) sess.run(tf.global_variables_initializer()) try: saver.restore(sess, os.getcwd() + '/model.ckpt') print('load from past checkpoint') except Exception as e: print(e) try: print('load yolo small') saver.restore(sess, os.getcwd() + '/YOLO_small.ckpt') print('loaded from YOLO small pretrained') except Exception as e: print(e) print('exit, atleast need a pretrained model')
def test(config): model = SelfAttNet(config) model.eval() dataset = DataSet(cofig)
def do_testing(model, test_images, test_labels): from time import time from utils import DataSet start = time() rate, factor = model['rate_factor'] learning_rate = rate / factor neurons = model['neuron_number'] test = DataSet(test_images, test_labels) x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder(tf.float32, shape=[None, 10]) # First Convolutional layer W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # Second Convolutional layer W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # Densely Connected layer W_fc1 = weight_variable([7 * 7 * 64, neurons]) b_fc1 = bias_variable([neurons]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # Dropout keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # Readout W_fc2 = weight_variable([neurons, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = tf.reduce_mean( -tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) train_step = tf.train.AdamOptimizer( learning_rate=learning_rate).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver() # defaults to saving all variables sess = tf.Session() try: saver.restore(sess, model['path']) print("Model %s correctly loaded" % model['path']) except Exception as e: print("No checkpoint found\n%s" % e) sys.exit(1) test_accuracy = accuracy.eval(session=sess, feed_dict={ x: test.images, y_: test.labels, keep_prob: 1.0 }) model['previous_test'] = model['test_accuracy'] model['test_accuracy'] = test_accuracy end = time() print( "Testing stats:\n - Neurons's number: %s\n - Learning rate: %s\n - Test accuracy: %s\n - Model: %s\n - Time: %s\n" % \ (neurons, learning_rate, test_accuracy, model['path'], (end - start))) return model
loss = loss / length print(index, loss) loss_svm.append(loss) loss_svm = np.array(loss_svm) x_list = np.linspace(0, len(loss_svm), len(loss_svm)) plt.plot(x_list, loss_svm) plt.show() f = open('RbmSvm.pt', 'wb') pickle.dump(net, f, protocol=pickle.HIGHEST_PROTOCOL) f.close() if __name__ == '__main__': file_path = "/home/asus/py3env/project/project/data/winequality-red.csv" dataset = DataSet(file_path, train=True, transform=standard_vector, target_transform=standard_vector) dataloader = DataLoader(dataset, 10) params = { "input_size": 10, "hidden_size": [100, 500], "output_size": 1, "learning_rate": 0.015, "training_epoches": 120, "pretrain_times": 7 } # train_BpNet(dataloader,params) # train_SvmMlp(dataloader,params) # train_RbmSvm(dataloader,params) trainDBNMlp(dataloader, params) file_path = "/home/asus/py3env/project/project/data/winequality-red.csv"