Esempio n. 1
0
def test_build_adhoc_network():
    import functools
    same_edge_p = functools.partial(Edge.same_edge, precision=0.0000001)

    # It should simply do it right
    edge_locations = ((Edge(id=1, start_node=1, end_node=10, cost=100, reverse_cost=1000), 0.5),)
    adhoc_nodes, adhoc_network = build_adhoc_network(edge_locations)
    assert len(adhoc_nodes) == 1
    node = adhoc_nodes[0]
    assert isinstance(node, AdHocNode)
    backward_edge, forward_edge = adhoc_network[node]
    backward_edge = backward_edge.reversed_edge()
    assert same_edge_p(backward_edge, Edge(id=1, start_node=1, end_node=node, cost=50, reverse_cost=500))
    assert same_edge_p(forward_edge, Edge(id=1, start_node=node, end_node=10, cost=50, reverse_cost=500))
    assert backward_edge == adhoc_network[1][0]
    assert backward_edge.reversed_edge() == adhoc_network[node][0]
    assert forward_edge == adhoc_network[node][1]
    assert forward_edge.reversed_edge() == adhoc_network[10][0]

    # It should do it simply right for 2 edge locations
    edge_locations = ((Edge(id=1, start_node=1, end_node=10, cost=100, reverse_cost=1000), 0.5),
                      (Edge(id=2, start_node=3, end_node=5, cost=100, reverse_cost=1000), 0.4))
    adhoc_nodes, adhoc_network = build_adhoc_network(edge_locations)
    assert len(adhoc_nodes) == 2

    # It should do it right at 3 locations at the same edge
    edge = Edge(id=1, start_node=1, end_node=10, cost=100, reverse_cost=1000)
    edge_locations = ((edge, 0.5), (edge.reversed_edge(), 0.4), (edge.reversed_edge(), 0))
    adhoc_nodes, adhoc_network = build_adhoc_network(edge_locations)
    # 1 -------------> n0 --> n1 -----------> n2 (10)
    n0, n1, n2 = adhoc_nodes
    assert same_edge_p(adhoc_network[1][0], Edge(id=1, start_node=1, end_node=n0, cost=50, reverse_cost=500))
    b0, f0 = adhoc_network[n0]
    assert b0 == adhoc_network[1][0].reversed_edge()
    assert same_edge_p(f0, Edge(id=1, start_node=n0, end_node=n1, cost=10, reverse_cost=100))
    b1, f1 = adhoc_network[n1]
    assert b1 == f0.reversed_edge()
    assert same_edge_p(f1, Edge(id=1, start_node=n1, end_node=n2, cost=40, reverse_cost=400))
    assert n2 == 10
    assert same_edge_p(adhoc_network[n2][0],
                       Edge(id=1, start_node=n1, end_node=n2, cost=40, reverse_cost=400).reversed_edge())
Esempio n. 2
0
def test_split_edge():
    import functools
    same_edge_p = functools.partial(Edge.same_edge, precision=0.0000001)
    edge = Edge(id=1, start_node=2, end_node=10, cost=100, reverse_cost=1000)

    # It should simply do it right
    adhoc_node_edges = split_edge(edge, [0.5])
    assert len(adhoc_node_edges) == 1
    n, b, f = adhoc_node_edges[0]
    assert n == AdHocNode(edge_id=edge.id, location= 0.5)
    assert same_edge_p(b, Edge(id=edge.id,
                               start_node=edge.start_node,
                               end_node=n,
                               cost=edge.cost * 0.5,
                               reverse_cost=edge.reverse_cost * 0.5))
    assert same_edge_p(f, Edge(id=edge.id,
                               start_node=n,
                               end_node=10,
                               cost=edge.cost * 0.5,
                               reverse_cost=edge.reverse_cost * 0.5))
    assert not b.reversed and not f.reversed

    # It should split reversed edge
    redge = edge.reversed_edge()
    adhoc_node_edges = split_edge(redge, [0.5])
    n, b, f = adhoc_node_edges[0]
    assert b.reversed and f.reversed

    # It should split the edge by 2 locations
    adhoc_node_edges = split_edge(edge, [0.5, 0.4])
    assert len(adhoc_node_edges) == 2
    (n2, b2, f2), (n1, b1, f1) = adhoc_node_edges
    assert same_edge_p(b1, Edge(id=edge.id,
                                start_node=edge.start_node,
                                end_node=n1,
                                cost=edge.cost * 0.4,
                                reverse_cost=edge.reverse_cost * 0.4))
    assert same_edge_p(f1, Edge(id=edge.id,
                                start_node=n1,
                                end_node=n2,
                                cost=edge.cost * 0.1,
                                reverse_cost=edge.reverse_cost * 0.1))
    assert b2 == f1
    assert same_edge_p(f2, Edge(id=edge.id,
                                start_node=n2,
                                end_node=edge.end_node,
                                cost=edge.cost * 0.5,
                                reverse_cost=edge.reverse_cost * 0.5))

    # It should split the edge at starting location
    adhoc_node_edges = split_edge(edge, [0])
    assert len(adhoc_node_edges) == 1
    n, b, f = adhoc_node_edges[0]
    assert n == edge.start_node
    assert b is None
    assert f == edge

    # It should split the edge at ending location
    adhoc_node_edges = split_edge(edge, [1])
    assert len(adhoc_node_edges) == 1
    n, b, f = adhoc_node_edges[0]
    assert n == edge.end_node
    assert b == edge
    assert f is None

    # It should do all right
    adhoc_node_edges = split_edge(edge, [1, 0.4, 0, 0.4, 0, 0.5])
    assert len(adhoc_node_edges) == 6
    # Do this because Python gurantees stable sort
    n0, b0, f0 = adhoc_node_edges[2]
    n1, b1, f1 = adhoc_node_edges[4]
    n2, b2, f2 = adhoc_node_edges[1]
    n3, b3, f3 = adhoc_node_edges[3]
    n4, b4, f4 = adhoc_node_edges[5]
    n5, b5, f5 = adhoc_node_edges[0]
    assert n0 == edge.start_node and b0 is None and f0 is None
    assert n1 == edge.start_node and b1 is None
    assert same_edge_p(f1, Edge(id=edge.id,
                                start_node=n1,
                                end_node=n2,
                                cost=edge.cost * 0.4,
                                reverse_cost=edge.reverse_cost * 0.4))
    assert isinstance(n2, AdHocNode)
    assert b2 == f1
    assert same_edge_p(f2, Edge(id=edge.id,
                                start_node=n2,
                                end_node=n3,
                                cost=0,
                                reverse_cost=0))
    assert isinstance(n3, AdHocNode)
    assert b3 == f2
    assert same_edge_p(f3, Edge(id=edge.id,
                                start_node=n3,
                                end_node=n4,
                                cost=edge.cost * 0.1,
                                reverse_cost=edge.reverse_cost * 0.1))
    assert isinstance(n4, AdHocNode)
    assert b4 == f3
    assert same_edge_p(f4, Edge(id=edge.id,
                                start_node=n4,
                                end_node=n5,
                                cost=edge.cost * 0.5,
                                reverse_cost=edge.reverse_cost * 0.5))
    assert n5 == edge.end_node
    assert b5 == f4
    assert f5 is None
Esempio n. 3
0
def test_road_network_route():
    # The example from http://en.wikipedia.org/wiki/Dijkstra's_algorithm
    e12 = Edge('12', 1, 2, 7, 7)
    e13 = Edge('13', 1, 3, 9, 9)
    e16 = Edge('16', 1, 6, 14, 14)
    e23 = Edge('23', 2, 3, 10, 10)
    e24 = Edge('24', 2, 4, 15, 15)
    e34 = Edge('34', 3, 4, 11, 11)
    e36 = Edge('36', 3, 6, 2, 2)
    e45 = Edge('45', 4, 5, 6, 6)
    e56 = Edge('56', 5, 6, 9, 9)
    # Extra isolated edge
    e89 = Edge('89', 8, 9, 2, 1000)
    ecircle = Edge('cc', 'c', 'c', 100000, 1)

    edges = (e12, e13, e16, e23, e24, e34, e36, e45, e56, e89)
    road_network = {
        1: (e12, e13, e16),
        2: (e12.reversed_edge(), e23, e24),
        3: (e13.reversed_edge(), e23.reversed_edge(), e34, e36),
        4: (e24.reversed_edge(), e34.reversed_edge(), e45),
        5: (e45.reversed_edge(), e56),
        6: (e16.reversed_edge(), e36.reversed_edge(), e56.reversed_edge()),
        # Extra isolated edges
        8: (e89, ),
        9: (e89.reversed_edge(),)}

    def _get_edges(node):
        return road_network.get(node, [])

    _AHN = collections.namedtuple('AdhocNodeForTest', 'edge_id, location, reversed')

    def _assert_path(path, nodes):
        if path or nodes:
            assert len(nodes) == len(path) + 1, 'count not matched'
        else:
            return
        path = reversed(path)
        nodes = iter(nodes)
        last_edge = None
        for edge in path:
            node = next(nodes)
            if isinstance(node, _AHN):
                assert node.edge_id == edge.id
                assert node.location == edge.start_node.location
                assert node.reversed == edge.reversed
            else:
                assert node == edge.start_node
            if last_edge:
                assert last_edge.end_node == edge.start_node
            last_edge = edge
        # Last node
        node = next(nodes)
        if isinstance(node, _AHN):
            assert node.edge_id == edge.id
            assert node.location == edge.end_node.location
            assert node.reversed == edge.reversed
        else:
            assert node == edge.end_node

    # It should route between 2 locations at different edges
    path, cost = road_network_route((e13, 0.5), (e56, 0.5), _get_edges)
    _assert_path(path, [_AHN('13', 0.5, False), 3, 6, _AHN('56', 0.5, True)])
    assert abs(cost - 11) <= 0.000001

    # It should route between 2 locations at the same edge
    path, cost = road_network_route((e13, 0.1), (e13, 0.9), _get_edges)
    _assert_path(path, [_AHN('13', 0.1, False), _AHN('13', 0.9, False)])
    assert abs(cost - 9 * 0.8) <= 0.000001

    # It should route between 2 locations at a circle edge (start node == end node) in a reverse way
    path1, cost1 = road_network_route((ecircle, 0.2), (ecircle, 0.7), _get_edges)
    path2, cost2 = road_network_route((ecircle, 0.2), (ecircle.reversed_edge(), 0.3), _get_edges)
    assert path1 == path2 and cost1 == cost2
    _assert_path(path1, [_AHN('cc', 0.2, True), 'c', _AHN('cc', 0.7, True)])
    assert abs(cost1 - 0.5) <= 0.0000001

    # It should give 0 cost if source and target are same location
    path, cost = road_network_route((e13, 0.1), (e13.reversed_edge(), 0.9), _get_edges)
    _assert_path(path, [_AHN('13', 0.1, True), _AHN('13', 1 - 0.9, True)])
    assert abs(cost) <= 0.000001
    assert cost == path[0].cost

    # It should route for locations at intersections
    path, cost = road_network_route((e13, 0), (e13, 1), _get_edges)
    _assert_path(path, [1, 3])
    assert path[0] == e13
    assert cost == e13.cost

    # It should not find a path
    from nose.tools import assert_raises
    assert_raises(sp.PathNotFound, road_network_route, (e13, 0.2), (e24, 0.9), _get_edges, 10)
    assert_raises(sp.PathNotFound, road_network_route, (e13, 0), (e89, 0.5), _get_edges)
    assert_raises(sp.PathNotFound, road_network_route, (e89, 0.9), (e89, 0.2), _get_edges, 10)

    # It should return multiple paths
    targets = [(e16, 0.6), (e13, 0.3), (e34, 0.5), (e56, 1)]
    results = road_network_route_many((e16, 0.1), targets, _get_edges)
    path, cost = results[0]
    assert abs(cost - 7) < 0.000001
    _assert_path(path, [_AHN('16', 0.1, False), _AHN('16', 0.6, False)])
    path, cost = results[1]
    assert abs(cost - 4.1) < 0.000001
    _assert_path(path, [_AHN('16', 0.1, True), 1, _AHN('13', 0.3, False)])
    path, cost = results[2]
    assert abs(cost - 15.9) < 0.000001
    _assert_path(path, [_AHN('16', 0.1, True), 1, 3, _AHN('34', 0.5, False)])
    path, cost = results[3]
    assert abs(cost - 12.4) < 0.000001
    _assert_path(path, [_AHN('16', 0.1, True), 1, 3, 6])

    # It should find paths when multiple targets are on the same edge with the source
    targets = [(e16, 0.2), (e16, 0.4), (e16, 1), (e16, 0)]
    results = road_network_route_many((e16, 0.8), targets, _get_edges)
    path, cost = results[0]
    _assert_path(path, [_AHN('16', 0.8, True), _AHN('16', 0.4, True), _AHN('16', 0.2, True)])
    assert abs(cost - 8.4) < 0.000001
    path, cost = results[1]
    _assert_path(path, [_AHN('16', 0.8, True), _AHN('16', 0.4, True)])
    assert abs(cost - 5.6) < 0.000001
    path, cost = results[2]
    _assert_path(path, [_AHN('16', 0.8, False), 6])
    assert abs(cost - 2.8) < 0.000001
    path, cost = results[3]
    _assert_path(path, [_AHN('16', 0.8, True), _AHN('16', 0.4, True), _AHN('16', 0.2, True), 1])
    assert abs(cost - 11.2) < 0.000001

    # It should find paths on the circle edge
    targets = [(ecircle, 0.8), (ecircle, 0.7), (ecircle, 0.1)]
    results = road_network_route_many((ecircle, 0.2), targets, _get_edges)
    path, cost = results[0]
    assert (cost - 0.4) < 0.0000001
    _assert_path(path, [_AHN('cc', 0.2, True), _AHN('cc', 0.1, True), 'c', _AHN('cc', 0.8, True)])
    path, cost = results[1]
    assert (cost - 0.5) < 0.0000001
    _assert_path(path, [_AHN('cc', 0.2, True), _AHN('cc', 0.1, True), 'c', _AHN('cc', 0.8, True), _AHN('cc', 0.7, True)])
    path, cost = results[2]
    assert (cost - 0.1) < 0.0000001
    _assert_path(path, [_AHN('cc', 0.2, True), _AHN('cc', 0.1, True)])

    # It should not find a path to the isolated edge
    targets = [(e13, 0.3), (e89, 0.2), (e34, 0.5)]
    results = road_network_route_many((e13, 0.3), targets, _get_edges)
    assert results[0][1] >= 0 and results[2][1] >= 0
    assert results[1] == (None, -1)

    # It should not find a path if the cost exceeds the max_path_cost
    results = road_network_route_many((e89, 0.9), [(e89, 0.8), (e89, 0.1)], _get_edges, 200)
    path, cost = results[0]
    assert abs(cost - 100) < 0.00001
    assert results[1] == (None, -1)

    # One-to-many routing should be the same as calling one-to-one
    # multiple times
    import random
    source = (e13, random.random())
    # Generate 20 locations at each edge
    targets = [(edge, random.random()) for edge in edges for _ in range(20)]

    def _route_many_hard_way(source, targets):
        route_distances = []
        for target in targets:
            try:
                _, route_distance = road_network_route(source, target, _get_edges)
            except sp.PathNotFound:
                route_distance = -1
            route_distances.append(route_distance)
        return route_distances

    hard_ways = _route_many_hard_way(source, targets)
    # Get costs in the second column
    easy_ways = list(zip(*road_network_route_many(source, targets, _get_edges)))[1]
    for hard_way, easy_way in zip(hard_ways, easy_ways):
        assert abs(hard_way - easy_way) < 0.0000000001