Esempio n. 1
0
                F.batch_analysis(gt_list, anomalies_list, keep_sets=0)

                # Fill in R
                E.R[i, j, k]['met']['TP'] = F.metric['TP']
                E.R[i, j, k]['met']['FP'] = F.metric['FP']
                E.R[i, j, k]['met']['TN'] = F.metric['TN']
                E.R[i, j, k]['met']['FN'] = F.metric['FN']
                E.R[i, j, k]['met']['precision'] = F.metric['precision']
                E.R[i, j, k]['met']['recall'] = F.metric['recall']
                E.R[i, j, k]['met']['F05'] = F.metric['F05']
                E.R[i, j, k]['met']['F1'] = F.metric['F1']
                E.R[i, j, k]['met']['F2'] = F.metric['F2']
                E.R[i, j, k]['met']['ACC'] = F.metric['ACC']
                E.R[i, j, k]['met']['FDR'] = F.metric['FDR']
                E.R[i, j, k]['met']['FPR'] = F.metric['FPR']

        ti = time.time() - start
        tim = GetInHMS(ti)
        print 'Finished Algorithm ver %i of %i at %s' % (i + 1, alg_ver_count,
                                                         tim)

    fin = time.time() - start
    hms = GetInHMS(fin)
    print 'Finished a total of %i iterations in %s' % (total_loops, hms)
    print 'Average of %f seconds per iteration' % (fin / total_loops)

    with open(path + '/' + "E.p", "wb") as f:
        pickle.dump(E, f)

    E.write2csv('TP', path + '/' + "TP.csv")
    E.write2csv('FP', path + '/' + "FP.csv")
Esempio n. 2
0
    ehighStr = '[ '
    for s in e_highs:
        ehighStr = ehighStr + "%.2f" % s + ', '
    
    alphasStr = '[ '
    for s in alphas:
        alphasStr = alphasStr + "%.2f" % s + ', '
        
        
    f.write('Algorithm Parameters\n')
    f.write('--------------------\n')
    f.write('Lower Energy Thresholds: ' + elowStr + ']\n')
    f.write('Upper Energy Thresholds: ' + ehighStr + ']\n')
    f.write('Alphas:                  ' + alphasStr + ']\n')
    f.write('Hold Current r lengths:  ' + str(holdOffs) + '\n.\n')
    
    f.write('Algorithms Run\n')
    f.write('--------------------\n')
    if run_spirit :
        f.write('SPIRIT\n')
    if run_frahst :
        f.write('FRAHST - My Most Current Version\n')
    if run_frahst_pedro :
        f.write('FRAHST - Pedros Published Version\n')    
        
os.chdir(cwd)     
    
finish  = time.time() - start
print 'Runtime = ' + str(finish) + 'seconds\n'
print 'In H:M:S = ' + GetInHMS(finish)
Esempio n. 3
0
def singleShiftRerun(parameter_string):

    params = parameter_string.split(', ')

    # Data Sets
    baseLine = 0.0

    num_streams = [int(params[0].split()[-1])]  # n
    SNRs = [int(params[1].split()[-1])]  # snr
    anomaly_lengths = [int(params[2].split()[-1])]  # l
    anomaly_magnitudes = [int(params[3].split()[-1])]  # m

    initial_conditions = 20  # i

    # Algorithm Parameters
    thresholds = params[4].split()[-1].split(',')

    e_highs = [float(thresholds[1][0:-1])]  # eh
    e_lows = [float(thresholds[0][1:])]  # el
    alphas = [float(params[5].split()[-1])]  # a
    holdOffs = [int(params[6].split()[-1])]  # h

    # Algorithm flags
    run_spirit = 0
    run_frahst = 1
    run_frahst_pedro = 0

    #===============================================================================
    # Initialise Data sets
    #========-=======================================================================

    # For Profiling
    start = time.time()

    for n in num_streams:
        for snr in SNRs:
            for l in anomaly_lengths:
                for m in anomaly_magnitudes:
                    A = 0
                    for i in range(initial_conditions):

                        # Seed random number generator
                        np.random.seed(i)

                        # Two ts that have anomalous shift
                        s0 = Tseries(0)
                        s1 = Tseries(0)
                        s0.makeSeries([1, 3, 1], [100, l, 200 - l],
                                      [baseLine, baseLine, baseLine + m],
                                      gradient=float(m) / float(l),
                                      noise_type='none')
                        s1.makeSeries([1, 4, 1], [200, l, 100 - l],
                                      [baseLine, baseLine, baseLine - m],
                                      gradient=float(m) / float(l),
                                      noise_type='none')
                        # The rest of the ts
                        for k in range(2, n):
                            name = 's' + str(k)
                            vars()[name] = Tseries(0)
                            vars()[name].makeSeries([1], [300], [baseLine],
                                                    noise_type='none')

                        # Concat into one matrix
                        S = scipy.c_[s0]
                        for k in range(1, n):
                            S = scipy.c_[S, vars()['s' + str(k)]]

                        # Concatonate to 3d array, timesteps x streams x initial condition
                        if type(A) == int:
                            A = S
                        else:
                            A = np.dstack((A, S))

                    # Calculate the noise
                    Ps = np.sum(A[:, :, 0]**2)
                    Pn = Ps / (10.**(snr / 10.))
                    scale = Pn / (n * 300.)
                    noise = np.random.randn(A.shape[0], A.shape[1],
                                            A.shape[2]) * np.sqrt(scale)
                    A = A + noise

                    #===============================================================================
                    # Ground Truths
                    #===============================================================================
                    #                                 # time step | length
                    ground_truths = np.array([[100, l], [200, l]])

                    #==============================================================================
                    #  Run Algorithm
                    #==============================================================================
                    alg_count = 1

                    for eh in e_highs:
                        for el in e_lows:
                            for a in alphas:
                                for h in holdOffs:

                                    print 'Running Algorithm(s) with:\nE_Thresh = (' + str(el) + ',' + str(eh) + ')\n' + \
                                    'alpha = ' + str(a) + '\nHoldOff = ' + str(h)

                                    SPIRIT_metricList = []
                                    FRAHST_metricList = []
                                    PEDRO_FRAHST_metricList = []

                                    for i in range(initial_conditions):

                                        # Load Data
                                        streams = A[:, :, i]

                                        if run_spirit == 1:
                                            # SPIRIT
                                            res_sp = SPIRIT(streams,
                                                            a, [el, eh],
                                                            evalMetrics='F',
                                                            reorthog=False,
                                                            holdOffTime=h)
                                            res_sp['Alg'] = 'SPIRIT: alpha = ' + str(a) + \
                                            ' ,E_Thresh = (' + str(el) + ',' + str(eh) + ')'

                                            pltSummary2(
                                                res_sp, streams, (el, eh))

                                            SPIRIT_metricList.append(
                                                analysis(
                                                    res_sp, ground_truths,
                                                    300))

    #                                        data = res_sp
    #                                        Title = 'SPIRIT alpha = ' + str(a) + ' ,E_Thresh = (' + str(el) + ',' + str(eh) + ')'
    #
    #                                    plot_4x1(streams, data['hidden'], data['e_ratio'], data['orthog_error'],
    #                                             ['Input Data','Hidden\nVariables',
    #                                    'Energy Ratio', 'Orthogonality\nError (dB)'] , 'Time Steps', Title)

    #                                        plot_4x1(streams, data['hidden'], data['orthog_error'], data['subspace_error'],
    #                                ['Input Data','Hidden\nVariables', 'Orthogonality\nError (dB)','Subspace\nError (dB)'],
    #                                                                 'Time Steps', Title)
    #
                                        if run_frahst == 1:

                                            # My version of Frahst
                                            res_fr = FRAHST_V3_1(
                                                streams,
                                                alpha=a,
                                                e_low=el,
                                                e_high=eh,
                                                holdOffTime=h,
                                                fix_init_Q=1,
                                                r=1,
                                                evalMetrics='F')
                                            res_fr[
                                                'Alg'] = 'MyFrahst: alpha = ' + str(
                                                    a
                                                ) + ' ,E_Thresh = (' + str(
                                                    el) + ',' + str(eh) + ')'

                                            FRAHST_metricList.append(
                                                analysis(
                                                    res_fr, ground_truths,
                                                    300))

                                            pltSummary2(
                                                res_fr, streams, (el, eh))
    #
    #                                        data = res_fr
    #                                        Title = 'My Frahst with alpha = ' + str(a) + ' ,E_Thresh = (' + str(el) + ',' + str(eh) + ')'
    #                                        plot_4x1(streams, data['hidden'], data['orthog_error'], data['subspace_error'],
    #                                                 ['Input Data','Hidden\nVariables', 'Orthogonality\nError (dB)','Subspace\nError (dB)'],
    #                                                                 'Time Steps', Title)

                                        if run_frahst_pedro == 1:

                                            # Pedros version of Frahst
                                            res_frped = frahst_pedro(
                                                streams,
                                                alpha=a,
                                                e_low=el,
                                                e_high=eh,
                                                holdOffTime=h,
                                                r=1,
                                                evalMetrics='F')
                                            res_frped['Alg'] = 'Pedros Frahst: alpha = ' + str(a) +  \
                                            ' ,E_Thresh = (' + str(el) + ',' + str(eh) + ')'

                                            PEDRO_FRAHST_metricList.append(
                                                analysis(
                                                    res_frped, ground_truths,
                                                    300))

                                            pltSummary2(
                                                res_frped, streams, (el, eh))
    #
    #                                        data = res_frped
    #                                        Title = 'Pedros Frahst: alpha = ' + str(a) +  \
    #                                        ' ,E_Thresh = (' + str(el) + ',' + str(eh) + ')'
    #
    #                                        plot_4x1(streams, data['hidden'], data['orthog_error'], data['subspace_error'],
    #                                                 ['Input Data','Hidden\nVariables', 'Orthogonality\nError (dB)','Subspace\nError (dB)'],
    #                                                                 'Time Steps', Title)

    finish = time.time() - start
    print 'Runtime = ' + str(finish) + 'seconds\n'
    print 'In H:M:S = ' + GetInHMS(finish)