def __init__(self, start_node, goal_node, grid):
        self.grid = grid
        self.position = start_node.xy
        self.start_node = start_node
        self.goal_node = goal_node

        self.open_list = Heap()
        self.start_node.set_val("g", 0)
        self.start_node.set_val("f", start_node.h_val)
        self.open_list.add(start_node, start_node.f_val)

        self.search()
Esempio n. 2
0
 def dijkstra(self, s):
     sdist = dict(((n, 1E9) for n in self.graph.nodes()))
     sdist[s] = 0
     pathprev = {s: None}
     marked = {}
     pq = [[sdist[n], n] for n in self.graph.nodes()]
     Ref = dict([(pq[i][1], i) for i in range(len(pq))])
     heap = Heap(pq, Ref)
     heap.heapify()
     #print pq
     #print Ref
     while pq:
         node_distance, node = heap.heappop()
         marked[node] = True
         for nei in self.graph.get_neighbours(node):
             if nei not in marked:
                 nei_new_dist = node_distance + self.graph.get_weight(
                     nei, node)
                 if sdist[nei] > nei_new_dist:
                     #print pq
                     heap.decrease_key(Ref[nei], nei_new_dist)
                     #print pq
                     sdist[nei] = nei_new_dist
                     pathprev[nei] = node
     return sdist, pathprev
	def __init__(self, start_node, goal_node, grid):
		self.grid = grid
		self.position = start_node.xy
		self.start_node = start_node
		self.goal_node = goal_node

		self.open_list = Heap()
		self.start_node.set_val("g", 0)
		self.start_node.set_val("f", start_node.h_val)
		self.open_list.add(start_node, start_node.f_val)

		self.search()
Esempio n. 4
0
    def run(self):
        while True:
            if self.need_to_exit:
                break
            if self.idle:
                sleep(TIME_TO_SLEEP_SECS)
                continue
            self.start_new_search = False
            first_step = Solution(self.board, 0, heuristic(self.board), [])
            all_options = Heap()
            all_options.push(first_step)
            all_options.push(first_step)

            while len(all_options) > 1 and not self.start_new_search:
                # something left at the pool
                # and no solution has been found yet
                cur_solution = all_options.pop()
                if cur_solution.board.is_winning_board():
                    self.return_results(cur_solution.moves_list)
                    self.idle = True
                    break

                elif cur_solution.board.is_losing_board():
                    continue
                else:
                    for n_board, move in cur_solution.board.get_successors():
                        n_moves_list = cur_solution.moves_list[:] + [move]
                        n_walked_so_far = cur_solution.distance_so_far + 1
                        n_heuristic_v = heuristic(n_board)
                        all_options.push(Solution(n_board, n_walked_so_far, n_heuristic_v, n_moves_list))
            # didn't find any solution
            self.idle = True
            continue

        print("ai daemon dies now")
Esempio n. 5
0
 def dijkstra(self, s):
     sdist = dict( ((n, 1E9) for n in self.graph.nodes()) )
     sdist[s] = 0
     pathprev = { s:None }
     marked = {}
     pq = [ [sdist[n], n] for n in self.graph.nodes() ]
     Ref = dict([ (pq[i][1],i) for i in range(len(pq)) ])
     heap = Heap(pq, Ref)
     heap.heapify()
     #print pq
     #print Ref
     while pq:
         node_distance, node = heap.heappop()
         marked[node] = True
         for nei in self.graph.get_neighbours(node):
             if nei not in marked:
                 nei_new_dist = node_distance + self.graph.get_weight(nei, node)
                 if sdist[nei] > nei_new_dist:
                     #print pq
                     heap.decrease_key(Ref[nei], nei_new_dist)
                     #print pq
                     sdist[nei] = nei_new_dist
                     pathprev[nei] = node
     return sdist, pathprev
class SearchAgent(object):
    def __init__(self, start_node, goal_node, grid):
        self.grid = grid
        self.position = start_node.xy
        self.start_node = start_node
        self.goal_node = goal_node

        self.open_list = Heap()
        self.start_node.set_val("g", 0)
        self.start_node.set_val("f", start_node.h_val)
        self.open_list.add(start_node, start_node.f_val)

        self.search()

    def __repr__(self):
        return "agent at - ( " + str(self.position) + " )"

    def expand(self, node):
        if node == self.goal_node:
            print "Success we got to the goal"
            self.success()
            return
        next_nodes = node.get_neighbours()
        node.visited = True
        for s_next in next_nodes:
            new_g_val = node.g_val + s_next.get_cost()
            if s_next.g_val == None:
                # First time g val setting
                s_next.set_val("g", new_g_val)
                f_val = new_g_val + s_next.h_val
                s_next.set_val("f", f_val)
                # Set this node as parent to retrace from goal
                s_next.parent = node
                self.open_list.add(s_next, f_val)

            elif s_next.g_val > new_g_val:
                # Old parent to this node is not the shortest path make new one
                s_next.set_val("g", new_g_val)
                f_val = new_g_val + s_next.h_val
                s_next.set_val("f", f_val)
                # Change parent
                s_next.parent = node
                if s_next.i == None:
                    # Not in the heap yet
                    self.open_list.add(s_next, f_val)
                else:
                    # update key in heap
                    self.open_list.update_key(s_next.i, f_val)
        # self.grid.root.after(800, self.search)
        self.search()

    def search(self):
        node = self.open_list.pop()
        if node.f_val > self.goal_node.f_val:
            print "Search Failed, path can not be reached"
            self.grid.root.destroy()
            return None
        self.expand(node)

    def success(self):
        path_list = []
        node = self.goal_node
        path_list.append(node)
        while True:
            # node.fill_box("yellow")
            node = node.parent
            path_list.append(node)
            if node == self.start_node:
                break
        self.move_agent(path_list)

    def move_agent(self, path):
        # Move agent along the path provided
        # Check for changing cost
        if len(path) == 0:
            self.grid.root.destroy()
            return None
        next_node = path.pop()
        self.start_node.clear_agent()
        self.start_node = next_node
        next_node.place_agent()
        self.grid.root.after(800, lambda: self.move_agent(path))
Esempio n. 7
0
def median_maintenance(nums):
    min_heap = Heap(min)
    max_heap = Heap(max)

    for num in nums:
        if max_heap.root() is None:
            max_heap.add(num)
        elif min_heap.root() is None:
            min_heap.add(num)
        elif num < max_heap.root():
            max_heap.add(num)
        else:
            min_heap.add(num)

        if (len(min_heap) - len(max_heap)) > 1:
            max_heap.add(min_heap.extract_root())
        elif (len(max_heap) - len(min_heap)) > 1:
            min_heap.add(max_heap.extract_root())

        if len(max_heap) > len(min_heap):
            result = max_heap.root()
        elif len(min_heap) > len(max_heap):
            result = min_heap.root()
        else:
            result = (max_heap.root() + min_heap.root()) / 2.0

    return result
class SearchAgent(object):

	def __init__(self, start_node, goal_node, grid):
		self.grid = grid
		self.position = start_node.xy
		self.start_node = start_node
		self.goal_node = goal_node

		self.open_list = Heap()
		self.start_node.set_val("g", 0)
		self.start_node.set_val("f", start_node.h_val)
		self.open_list.add(start_node, start_node.f_val)

		self.search()

	def __repr__(self):
		return "agent at - ( " + str(self.position) + " )"

	def expand(self, node):
		if node == self.goal_node:
			print "Success we got to the goal"
			self.success()
			return
		next_nodes = node.get_neighbours()
		node.visited = True
		for s_next in next_nodes:
			new_g_val = node.g_val + s_next.get_cost()
			if s_next.g_val == None:
				# First time g val setting
				s_next.set_val("g", new_g_val)
				f_val = new_g_val + s_next.h_val
				s_next.set_val("f", f_val)
				# Set this node as parent to retrace from goal
				s_next.parent = node
				self.open_list.add(s_next, f_val)

			elif s_next.g_val > new_g_val:
				# Old parent to this node is not the shortest path make new one
				s_next.set_val("g", new_g_val)
				f_val = new_g_val + s_next.h_val
				s_next.set_val("f", f_val)
				# Change parent
				s_next.parent = node
				if s_next.i == None:
					# Not in the heap yet
					self.open_list.add(s_next, f_val)
				else:
					# update key in heap
					self.open_list.update_key(s_next.i, f_val)
		# self.grid.root.after(800, self.search)
		self.search()

	def search(self):
		node = self.open_list.pop()
		if node.f_val > self.goal_node.f_val:
			print "Search Failed, path can not be reached"
			self.grid.root.destroy()
			return None
		self.expand(node)

	def success(self):
		path_list = []
		node = self.goal_node
		path_list.append(node)
		while True:
			# node.fill_box("yellow")
			node = node.parent
			path_list.append(node)
			if node == self.start_node:
				break
		self.move_agent(path_list)

	def move_agent(self,path):
		# Move agent along the path provided
		# Check for changing cost
		if len(path) == 0:
			self.grid.root.destroy()
			return None
		next_node = path.pop()
		self.start_node.clear_agent()
		self.start_node = next_node
		next_node.place_agent()
		self.grid.root.after(800, lambda:self.move_agent(path))

		
Esempio n. 9
0
from utils import Heap

heap = Heap([3, 1, 2])
heap.push(1)
heap.push(2)
a = [i for i in heap]

assert (a == [1, 1, 2, 2, 3])