def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None, base_width=4): super(SEResNeXtBottleneck, self).__init__() width = math.floor(planes * (base_width / 64)) * groups self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False, stride=1) self.bn1 = SyncBN2d(width) self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) self.bn2 = SyncBN2d(width) self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False) self.bn3 = SyncBN2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se_module = SEModule(planes * 4, reduction=reduction) self.downsample = downsample self.stride = stride
def __init__(self, in_channels, num_classes, backend='resnet18', pretrained='imagenet'): super(UnetResnetAE, self).__init__() self.in_channes = in_channels self.num_classes = num_classes if 'resne' in backend: self.encoder = ResnetBackend(backend, pretrained) else: raise NotImplementedError if backend in ['resnet18', 'resnet34']: block = BasicBlock else: block = Bottleneck inter_channel = self.encoder.lastconv_channel self.center = nn.Sequential(nn.Conv2d(inter_channel, 512, kernel_size=3, padding=1, bias=False), SyncBN2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 256, kernel_size=3, padding=1, bias=False), SyncBN2d(256), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2)) self.decoder5 = Decoder(block, 256 + inter_channel, 512, 64) self.decoder4 = Decoder(block, 64 + inter_channel // 2, 256, 64) self.decoder3 = Decoder(block, 64 + inter_channel // 4, 128, 64) self.decoder2 = Decoder(block, 64 + inter_channel // 8, 64, 64) self.decoder1 = Decoder(block, 64, 32, 64) self.cbr_last = nn.Sequential(nn.Conv2d(64 * 6, 64, kernel_size=3, padding=1, bias=False), SyncBN2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, self.num_classes, kernel_size=1))
def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): super(SEResNetBottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False, stride=stride) self.bn1 = SyncBN2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, groups=groups, bias=False) self.bn2 = SyncBN2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = SyncBN2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se_module = SEModule(planes * 4, reduction=reduction) self.downsample = downsample self.stride = stride
def __init__(self, in_channels, num_classes, backend='resnet18', pool_scales=(1, 2, 3, 6), pretrained='imagenet'): ''' :param in_channels: :param num_classes: :param backend: only support resnet, otherwise need to have low_features for aux and high_features methods for out ''' super(PSPNet, self).__init__() self.in_channes = in_channels self.num_classes = num_classes if hasattr(backend, 'low_features') and hasattr(backend, 'high_features') \ and hasattr(backend, 'lastconv_channel'): self.backend = backend elif 'resnet' in backend: ## in the future, I may retrain on os=16 (now without os) self.backend = ResnetBackend(backend, os=None, pretrained=pretrained) elif 'resnext' in backend: self.backend = ResnetBackend(backend, os=None, pretrained=pretrained) else: raise NotImplementedError self.pp_out_channel = 256 self.pyramid_pooling = PPBlock(self.backend.lastconv_channel, out_channel=self.pp_out_channel, pool_scales=pool_scales) self.cbr_last = nn.Sequential( nn.Conv2d(self.backend.lastconv_channel + self.pp_out_channel * len(pool_scales), self.pp_out_channel, kernel_size=3, padding=1, bias=False), SyncBN2d(self.pp_out_channel), nn.ReLU(inplace=True), nn.Dropout2d(0.1), nn.Conv2d(self.pp_out_channel, num_classes, kernel_size=1)) self.cbr_deepsup = nn.Sequential( nn.Conv2d(self.backend.lastconv_channel // 2, self.backend.lastconv_channel // 4, kernel_size=3, padding=1, bias=False), SyncBN2d(self.backend.lastconv_channel // 4), nn.ReLU(inplace=True), nn.Dropout2d(0.1), nn.Conv2d(self.backend.lastconv_channel // 4, num_classes, kernel_size=1))
def __init__(self, in_channel, out_channel): super(unetConv2d, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channel, out_channel, kernel_size=3, padding=1, bias=False), SyncBN2d(out_channel), nn.ReLU(inplace=True), nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1, bias=False), SyncBN2d(out_channel), nn.ReLU(inplace=True) )
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride, dilation) self.bn1 = SyncBN2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = SyncBN2d(planes) self.downsample = downsample self.stride = stride
def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = SyncBN2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = SyncBN2d(out_channels) self.downsample = downsample if (self.downsample is None) and (in_channels != out_channels): self.downsample = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), SyncBN2d(out_channels)) self.stride = stride
def _make_layer(self, block, planes, blocks, groups, reduction, stride=1, downsample_kernel_size=1, downsample_padding=0): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=downsample_kernel_size, stride=stride, padding=downsample_padding, bias=False), SyncBN2d(planes * block.expansion), ) layers = [] layers.append( block(self.inplanes, planes, groups, reduction, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, groups, reduction)) return nn.Sequential(*layers)
def __init__(self, inp, oup, stride, dilation, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = round(inp * expand_ratio) self.use_res_connect = self.stride == 1 and inp == oup if expand_ratio == 1: self.conv = nn.Sequential( # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, dilation, dilation, groups=hidden_dim, bias=False), SyncBN2d(hidden_dim), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), SyncBN2d(oup), ) else: self.conv = nn.Sequential( # pw nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), SyncBN2d(hidden_dim), nn.ReLU6(inplace=True), # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, dilation, dilation, groups=hidden_dim, bias=False), SyncBN2d(hidden_dim), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), SyncBN2d(oup), )
def __init__(self, in_channel=2048, out_channel=256, pool_scales=(1, 2, 3, 6)): ''' :param in_channel: default 2048 for resnet50 backend :param out_channel: default 256 for resnet50 backend :param pool_scales: default scales [1,2,3,6] ''' super(PPBlock, self).__init__() self.pp_bra1 = nn.Sequential( OrderedDict([('pool1', nn.AdaptiveAvgPool2d(pool_scales[0])), ('conv1', nn.Conv2d(in_channel, out_channel, kernel_size=1, bias=False)), ('bn1', SyncBN2d(out_channel)), ('relu1', nn.ReLU(inplace=True))])) self.pp_bra2 = nn.Sequential( OrderedDict([('pool2', nn.AdaptiveAvgPool2d(pool_scales[1])), ('conv2', nn.Conv2d(in_channel, out_channel, kernel_size=1, bias=False)), ('bn2', SyncBN2d(out_channel)), ('relu2', nn.ReLU(inplace=True))])) self.pp_bra3 = nn.Sequential( OrderedDict([('pool3', nn.AdaptiveAvgPool2d(pool_scales[2])), ('conv3', nn.Conv2d(in_channel, out_channel, kernel_size=1, bias=False)), ('bn3', SyncBN2d(out_channel)), ('relu3', nn.ReLU(inplace=True))])) self.pp_bra4 = nn.Sequential( OrderedDict([('pool4', nn.AdaptiveAvgPool2d(pool_scales[3])), ('conv4', nn.Conv2d(in_channel, out_channel, kernel_size=1, bias=False)), ('bn4', SyncBN2d(out_channel)), ('relu4', nn.ReLU(inplace=True))]))
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = SyncBN2d(planes) self.conv2 = conv3x3(planes, planes, stride=stride, dilation=dilation) self.bn2 = SyncBN2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = SyncBN2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
def __init__(self, block, layers, output_stride=16): if output_stride == 16: dilations = [1, 1, 1, 2] strides = [1, 2, 2, 1] elif output_stride == 8: dilations = [1, 1, 2, 4] strides = [1, 2, 1, 1] elif output_stride is None: dilations = [1, 1, 1, 1] strides = [1, 2, 2, 2] else: raise Warning("output_stride must be 8 or 16 or None!") self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = SyncBN2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], dilation=dilations[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], dilation=dilations[1]) self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], dilation=dilations[2]) self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3]) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, SyncBN2d): m.weight.data.fill_(1) m.bias.data.zero_()
def conv_1x1_bn(inp, oup): return nn.Sequential(nn.Conv2d(inp, oup, 1, 1, 0, bias=False), SyncBN2d(oup), nn.ReLU6(inplace=True))
def __init__(self, block, layers, groups, reduction, dropout_p=0.2, inplanes=128, input_3x3=True, downsample_kernel_size=3, downsample_padding=1, num_classes=1000): """ Parameters ---------- block (nn.Module): Bottleneck class. - For SENet154: SEBottleneck - For SE-ResNet models: SEResNetBottleneck - For SE-ResNeXt models: SEResNeXtBottleneck layers (list of ints): Number of residual blocks for 4 layers of the network (layer1...layer4). groups (int): Number of groups for the 3x3 convolution in each bottleneck block. - For SENet154: 64 - For SE-ResNet models: 1 - For SE-ResNeXt models: 32 reduction (int): Reduction ratio for Squeeze-and-Excitation modules. - For all models: 16 dropout_p (float or None): Drop probability for the Dropout layer. If `None` the Dropout layer is not used. - For SENet154: 0.2 - For SE-ResNet models: None - For SE-ResNeXt models: None inplanes (int): Number of input channels for layer1. - For SENet154: 128 - For SE-ResNet models: 64 - For SE-ResNeXt models: 64 input_3x3 (bool): If `True`, use three 3x3 convolutions instead of a single 7x7 convolution in layer0. - For SENet154: True - For SE-ResNet models: False - For SE-ResNeXt models: False downsample_kernel_size (int): Kernel size for downsampling convolutions in layer2, layer3 and layer4. - For SENet154: 3 - For SE-ResNet models: 1 - For SE-ResNeXt models: 1 downsample_padding (int): Padding for downsampling convolutions in layer2, layer3 and layer4. - For SENet154: 1 - For SE-ResNet models: 0 - For SE-ResNeXt models: 0 num_classes (int): Number of outputs in `last_linear` layer. - For all models: 1000 """ super(SENet, self).__init__() self.inplanes = inplanes if input_3x3: layer0_modules = [ ('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1, bias=False)), ('bn1', SyncBN2d(64)), ('relu1', nn.ReLU(inplace=True)), ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)), ('bn2', SyncBN2d(64)), ('relu2', nn.ReLU(inplace=True)), ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)), ('bn3', SyncBN2d(inplanes)), ('relu3', nn.ReLU(inplace=True)), ] else: layer0_modules = [ ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2, padding=3, bias=False)), ('bn1', SyncBN2d(inplanes)), ('relu1', nn.ReLU(inplace=True)), ] # To preserve compatibility with Caffe weights `ceil_mode=True` # is used instead of `padding=1`. layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2, ceil_mode=True))) self.layer0 = nn.Sequential(OrderedDict(layer0_modules)) self.layer1 = self._make_layer(block, planes=64, blocks=layers[0], groups=groups, reduction=reduction, downsample_kernel_size=1, downsample_padding=0) self.layer2 = self._make_layer( block, planes=128, blocks=layers[1], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding) self.layer3 = self._make_layer( block, planes=256, blocks=layers[2], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding) self.layer4 = self._make_layer( block, planes=512, blocks=layers[3], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding) self.avg_pool = nn.AvgPool2d(7, stride=1) self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None self.last_linear = nn.Linear(512 * block.expansion, num_classes)
def __init__(self, in_channel=2048, out_channel=256, os=16): ''' :param in_channel: default 2048 for resnet101 :param out_channel: default 256 for resnet101 :param os: 16 or 8 ''' super(ASPPBlock, self).__init__() if os == 16: rates = [1, 6, 12, 18] elif os == 8: rates = [1, 12, 24, 36] else: raise NotImplementedError self.gave_pool = nn.Sequential( OrderedDict([('gavg', nn.AdaptiveAvgPool2d(rates[0])), ('conv0_1', nn.Conv2d(in_channel, out_channel, kernel_size=1, bias=False)), ('bn0_1', SyncBN2d(out_channel)), ('relu0_1', nn.ReLU(inplace=True))])) self.conv1_1 = nn.Sequential( OrderedDict([('conv0_2', nn.Conv2d(in_channel, out_channel, kernel_size=1, bias=False)), ('bn0_2', SyncBN2d(out_channel)), ('relu0_2', nn.ReLU(inplace=True))])) self.aspp_bra1 = nn.Sequential( OrderedDict([('conv1_1', nn.Conv2d(in_channel, out_channel, kernel_size=3, padding=rates[1], dilation=rates[1], bias=False)), ('bn1_1', SyncBN2d(out_channel)), ('relu1_1', nn.ReLU(inplace=True))])) self.aspp_bra2 = nn.Sequential( OrderedDict([('conv1_2', nn.Conv2d(in_channel, out_channel, kernel_size=3, padding=rates[2], dilation=rates[2], bias=False)), ('bn1_2', SyncBN2d(out_channel)), ('relu1_2', nn.ReLU(inplace=True))])) self.aspp_bra3 = nn.Sequential( OrderedDict([('conv1_3', nn.Conv2d(in_channel, out_channel, kernel_size=3, padding=rates[3], dilation=rates[3], bias=False)), ('bn1_3', SyncBN2d(out_channel)), ('relu1_3', nn.ReLU(inplace=True))])) self.aspp_catdown = nn.Sequential( OrderedDict([('conv_down', nn.Conv2d(5 * out_channel, out_channel, kernel_size=1, bias=False)), ('bn_down', SyncBN2d(out_channel)), ('relu_down', nn.ReLU(inplace=True)), ('drop_out', nn.Dropout(.1))]))
def __init__(self, in_channels, num_classes, backend='resnet18', os=16, pretrained='imagenet'): ''' :param in_channels: :param num_classes: :param backend: only support resnet, otherwise need to have low_features and high_features methods for out ''' super(DeepLabv3_plus, self).__init__() self.in_channes = in_channels self.num_classes = num_classes if hasattr(backend, 'low_features') and hasattr(backend, 'high_features') \ and hasattr(backend, 'lastconv_channel'): self.backend = backend elif 'resnet' in backend: self.backend = ResnetBackend(backend, os, pretrained) elif 'resnext' in backend: self.backend = ResnetBackend(backend, os=None, pretrained=pretrained) elif 'mobilenet' in backend: self.backend = MobileNetBackend(backend, os=os, pretrained=pretrained) elif 'shufflenet' in backend: self.backend = ShuffleNetBackend(backend, os=os, pretrained=pretrained) else: raise NotImplementedError if hasattr(self.backend, 'interconv_channel'): self.aspp_out_channel = self.backend.interconv_channel else: self.aspp_out_channel = self.backend.lastconv_channel // 8 self.aspp_pooling = ASPPBlock(self.backend.lastconv_channel, self.aspp_out_channel, os) self.cbr_low = nn.Sequential( nn.Conv2d(self.aspp_out_channel, self.aspp_out_channel // 5, kernel_size=1, bias=False), SyncBN2d(self.aspp_out_channel // 5), nn.ReLU(inplace=True)) self.cbr_last = nn.Sequential( nn.Conv2d(self.aspp_out_channel + self.aspp_out_channel // 5, self.aspp_out_channel, kernel_size=3, padding=1, bias=False), SyncBN2d(self.aspp_out_channel), nn.ReLU(inplace=True), nn.Conv2d(self.aspp_out_channel, self.aspp_out_channel, kernel_size=3, padding=1, bias=False), SyncBN2d(self.aspp_out_channel), nn.ReLU(inplace=True), nn.Conv2d(self.aspp_out_channel, self.num_classes, kernel_size=1))
def conv_bn(inp, oup, stride): return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False), SyncBN2d(oup), nn.ReLU6(inplace=True))