Esempio n. 1
0
        generator_content_loss = content_criterion(high_res_fake,
                                                   high_res_real)
        mean_generator_content_loss += generator_content_loss.data[0]

        generator_content_loss.backward()
        optim_generator.step()

        ######### Status and display #########
        # sys.stdout.write('\r[%d/%d][%d/%d] Generator_MSE_Loss: %.4f' % (epoch, 2, i, len(dataloader), generator_content_loss.data[0]))
        if i % 100 == 0:
            print(
                '\r[%d/%d][%d/%d] Generator_MSE_Loss: %.4f' %
                (epoch, 2, i, len(dataloader), generator_content_loss.data[0]))
        # visualizer.show(low_res, high_res_real.cpu().data, high_res_fake.cpu().data)
        visualizer.save(low_res,
                        high_res_real.cpu().data,
                        high_res_fake.cpu().data, epoch, i)

    sys.stdout.write('\r[%d/%d][%d/%d] Generator_MSE_Loss: %.4f\n' %
                     (epoch, 2, i, len(dataloader),
                      mean_generator_content_loss / len(dataloader)))
    print('\r[%d/%d][%d/%d] Generator_MSE_Loss: %.4f\n' %
          (epoch, 2, i, len(dataloader),
           mean_generator_content_loss / len(dataloader)))
    log_value('generator_mse_loss',
              mean_generator_content_loss / len(dataloader), epoch)

# Do checkpointing
torch.save(generator.state_dict(), '%s/generator_pretrain.pth' % opt.out)

# SRGAN training
Esempio n. 2
0
def train(**kwargs):
    # step1:config
    opt.parse(**kwargs)
    vis = Visualizer(opt.env)
    device = t.device('cuda') if opt.use_gpu else t.device('cpu')
    
    # step2:data
    # dataloader, style_img
    # 这次图片的处理和之前不一样,之前都是normalize,这次改成了lambda表达式乘以255,这种转化之后要给出一个合理的解释
    # 图片共分为两种,一种是原图,一种是风格图片,在作者的代码里,原图用于训练,需要很多,风格图片需要一张,用于损失函数
    
    transforms = T.Compose([
        T.Resize(opt.image_size),
        T.CenterCrop(opt.image_size),
        T.ToTensor(),
        T.Lambda(lambda x: x*255)    
    ])
    # 这次获取图片的方式和第七章一样,仍然是ImageFolder的方式,而不是dataset的方式
    dataset = tv.datasets.ImageFolder(opt.data_root,transform=transforms)
    dataloader = DataLoader(dataset,batch_size=opt.batch_size,shuffle=True,num_workers=opt.num_workers,drop_last=True)
    
    style_img = get_style_data(opt.style_path) # 1*c*H*W
    style_img = style_img.to(device)
    vis.img('style_image',(style_img.data[0]*0.225+0.45).clamp(min=0,max=1)) # 个人觉得这个没必要,下次可以实验一下
    
    # step3: model:Transformer_net 和 损失网络vgg16
    # 整个模型分为两部分,一部分是转化模型TransformerNet,用于转化原始图片,一部分是损失模型Vgg16,用于评价损失函数,
    # 在这里需要注意一下,Vgg16只是用于评价损失函数的,所以它的参数不参与反向传播,只有Transformer的参数参与反向传播,
    # 也就意味着,我们只训练TransformerNet,只保存TransformerNet的参数,Vgg16的参数是在网络设计时就已经加载进去的。
    # Vgg16是以验证model.eval()的方式在运行,表示其中涉及到pooling等层会发生改变
    # 那模型什么时候开始model.eval()呢,之前是是val和test中就会这样设置,那么Vgg16的设置理由是什么?
    # 这里加载模型的时候,作者使用了简单的map_location的记录方法,更轻巧一些
    # 发现作者在写这些的时候越来越趋向方便的方式
    # 在cuda的使用上,模型的cuda是直接使用的,而数据的cuda是在正式训练的时候才使用的,注意一下两者的区别
    # 在第七章作者是通过两种方式实现网络分离的,一种是对于前面网络netg,进行 fake_img = netg(noises).detach(),使得非叶子节点变成一个类似不需要邱求导的叶子节点
    # 第四章还需要重新看,
    
    transformer_net = TransformerNet()
    
    if opt.model_path:
        transformer_net.load_state_dict(t.load(opt.model_path,map_location= lambda _s, _: _s))    
    transformer_net.to(device)
    

    
    # step3: criterion and optimizer
    optimizer = t.optim.Adam(transformer_net.parameters(),opt.lr)
    # 此通过vgg16实现的,损失函数包含两个Gram矩阵和均方误差,所以,此外,我们还需要求Gram矩阵和均方误差
    vgg16 = Vgg16().eval() # 待验证
    vgg16.to(device)
    # vgg的参数不需要倒数,但仍然需要反向传播
    # 回头重新考虑一下detach和requires_grad的区别
    for param in vgg16.parameters():
        param.requires_grad = False
    criterion = t.nn.MSELoss(reduce=True, size_average=True)
    
    
    # step4: meter 损失统计
    style_meter = meter.AverageValueMeter()
    content_meter = meter.AverageValueMeter()
    total_meter = meter.AverageValueMeter()
    
    # step5.2:loss 补充
    # 求style_image的gram矩阵
    # gram_style:list [relu1_2,relu2_2,relu3_3,relu4_3] 每一个是b*c*c大小的tensor
    with t.no_grad():
        features = vgg16(style_img)
        gram_style = [gram_matrix(feature) for feature in features]
    # 损失网络 Vgg16
    # step5: train
    for epoch in range(opt.epoches):
        style_meter.reset()
        content_meter.reset()
        
        # step5.1: train
        for ii,(data,_) in tqdm(enumerate(dataloader)):
            optimizer.zero_grad()
            # 这里作者没有进行 Variable(),与之前不同
            # pytorch 0.4.之后tensor和Variable不再严格区分,创建的tensor就是variable
            # https://mp.weixin.qq.com/s?__biz=MzI0ODcxODk5OA==&mid=2247494701&idx=2&sn=ea8411d66038f172a2f553770adccbec&chksm=e99edfd4dee956c23c47c7bb97a31ee816eb3a0404466c1a57c12948d807c975053e38b18097&scene=21#wechat_redirect
            data = data.to(device)
            y = transformer_net(data)
            # vgg对输入的图片需要进行归一化
            data = normalize_batch(data)
            y = normalize_batch(y)

           
            feature_data = vgg16(data)
            feature_y = vgg16(y) 
            # 疑问??现在的feature是一个什么样子的向量?
            
            # step5.2: loss:content loss and style loss
            # content_loss
            # 在这里和书上的讲的不一样,书上是relu3_3,代码用的是relu2_2
            # https://blog.csdn.net/zhangxb35/article/details/72464152?utm_source=itdadao&utm_medium=referral
            # 均方误差指的是一个像素点的损失,可以理解N*b*h*w个元素加起来,然后除以N*b*h*w
            # 随机梯度下降法本身就是对batch内loss求平均后反向传播
            content_loss = opt.content_weight*criterion(feature_y.relu2_2,feature_data.relu2_2)
            # style loss
            # style loss:relu1_2,relu2_2,relu3_3,relu3_4 
            # 此时需要求每一张图片的gram矩阵
            
            style_loss = 0
            # tensor也可以 for i in tensor:,此时只拆解外面一层的tensor
            # ft_y:b*c*h*w, gm_s:1*c*h*w
            for ft_y, gm_s in zip(feature_y, gram_style):
                gram_y = gram_matrix(ft_y)
                style_loss += criterion(gram_y, gm_s.expand_as(gram_y))
            style_loss *= opt.style_weight
            
            total_loss = content_loss + style_loss
            optimizer.zero_grad()
            total_loss.backward()
            optimizer.step()
            #import ipdb
            #ipdb.set_trace()
            # 获取tensor的值 tensor.item()   tensor.tolist()
            content_meter.add(content_loss.item())
            style_meter.add(style_loss.item())
            total_meter.add(total_loss.item())
            
            # step5.3: visualize
            if (ii+1)%opt.print_freq == 0 and opt.vis:
                # 为什么总是以这种形式进行debug
                if os.path.exists(opt.debug_file):
                    import ipdb
                    ipdb.set_trace()
                vis.plot('content_loss',content_meter.value()[0])
                vis.plot('style_loss',style_meter.value()[0])
                vis.plot('total_loss',total_meter.value()[0])
                # 因为现在data和y都已经经过了normalize,变成了-2~2,所以需要把它变回去0-1
                vis.img('input',(data.data*0.225+0.45)[0].clamp(min=0,max=1))
                vis.img('output',(y.data*0.225+0.45)[0].clamp(min=0,max=1))
            
        # step 5.4 save and validate and visualize
        if (epoch+1) % opt.save_every == 0:
            t.save(transformer_net.state_dict(), 'checkpoints/%s_style.pth' % epoch)
            # 保存图片的几种方法,第七章的是 
            # tv.utils.save_image(fix_fake_imgs,'%s/%s.png' % (opt.img_save_path, epoch),normalize=True, range=(-1,1))
            # vis.save竟然没找到  我的神   
            vis.save([opt.env])
Esempio n. 3
0
def train(**kwargs):
    opt._parse(kwargs)
    vis = Visualizer(opt.env,port = opt.vis_port)
    device = t.device('cuda') if opt.use_gpu else t.device('cpu')

    # 数据加载
    train_data = FLogo(opt.data_root,train=True)
    train_dataloader = DataLoader(train_data,opt.batch_size,shuffle=True,num_workers=opt.num_workers)

    '''
    # 以下内容是可视化dataloader的数据的
    一 检查dataset是否合理
    二 为了写论文凑图
    
    dataiter = iter(train_dataloader)
    img1,img2,lable=dataiter.next()
    img1 = tv.utils.make_grid((img1+1)/2,nrow=6,padding=2).numpy()
    img2 = tv.utils.make_grid((img2+1)/2,nrow=6,padding=2).numpy()
    plt.figure()
    plt.imshow(np.transpose(img1, (1, 2, 0)))
    plt.figure()
    plt.imshow(np.transpose(img2, (1, 2, 0)))
    plt.figure()
    lables = label.unsqueeze(1)  # lables
    mask = tv.utils.make_grid(lables,nrow=6,padding=2).numpy()
    plt.imshow(np.transpose(mask, (1, 2, 0)))
    plt.show()


from torchvision.transforms import ToPILImage
import numpy as np
import matplotlib.pylab as plt
train()
    '''

    # 网络
    net = Net()
    net.train()

    # 加载预训练模型
    if opt.load_model_path:
        net.load_state_dict(t.load(opt.load_model_path,map_location = lambda storage,loc:storage),False)
        print('已加载完。。')
    else:
        # 模型初始化
        for m in net.modules():
            if isinstance(m, (nn.Conv2d, nn.Linear)):
                nn.init.xavier_normal_(m.weight)
                print('模型参数完成初始化。。')
    net.to(device)

    # 损失函数和优化器
    criterion = nn.BCEWithLogitsLoss(pos_weight=opt.pos_weight.to(device))
    optimizer = t.optim.SGD(net.parameters(),lr=opt.lr, momentum=opt.momentum,weight_decay=opt.weight_decay)

    # 使用meter模块
    loss_meter = meter.AverageValueMeter()

    # 学习率调整策略
    # scheduler = StepLR(optimizer, step_size=1000, gamma=0.5)

    for epoch in range(opt.epoches):
        loss_meter.reset() # 重置loss_meter??
        for ii,(target_img,query_logo,mask) in tqdm.tqdm(enumerate(train_dataloader)):
            print(target_img.shape)
            # 训练
            target_img = target_img.to(device)
            query_logo = query_logo.to(device)

            mask = mask.to(device)

            optimizer.zero_grad()

            output = net(query_logo,target_img)
            output = output.squeeze()
            predict = t.sigmoid(output)
            # predict_mask = t.sigmoid(output) # true output should be sigmoid
            # ipdb.set_trace()
            true_mask = mask/255

            # predict = output.view(output.size(0),-1)
            # target = true_mask.view(true_mask.size(0),-1)
            # ipdb.set_trace()
            # print(predict.size(),target.size())


            # loss = criterion(F.softmax(output,dim=2),true_mask)
            loss = criterion(output,true_mask)
            # print(loss.item())

            loss.backward()
            optimizer.step()

            # meter update and visualize
            loss_meter.add(loss.item())
            if (ii+1)%opt.plot_every == 0:

                vis.img('target_img', ((target_img + 1) / 2).data[0])
                vis.img('query_logo', ((query_logo + 1) / 2).data[0])
                vis.img('truth groud', (true_mask.data[0]))
                vis.img('predict', predict.data[0])
                pre_judgement = predict.data[0]
                pre_judgement[pre_judgement > 0.5] = 1  # 改成0.7怎么样!
                pre_judgement[pre_judgement <= 0.5] = 0
                vis.img('pre_judge(>0.5)', pre_judgement)

                # vis.img('pre_judge', pre_judgement)
                # vis.log({'predicted':output.data[0].cpu().numpy()})
                # vis.log({'truth groud':true_mask.data[0].cpu().numpy()})

        print('finish epoch:',epoch)
        # vis.log({'predicted':output.data[0].cpu().numpy()})
        vis.plot('loss',loss_meter.value()[0])

        if (epoch+1) %opt.save_model_epoch == 0:
            vis.save([opt.env])
            t.save(net.state_dict(),'checkpoints/%s_localize_v6.pth' % epoch)
Esempio n. 4
0
def train(**kwargs):
    opt.parse(kwargs)
    vis = Visualizer(opt.env)

    model = models.KeypointModel(opt)
    if opt.model_path is not None:
        model.load(opt.model_path)

    model.cuda()
    dataset = Dataset(opt)
    dataloader = t.utils.data.DataLoader(dataset,
                                         opt.batch_size,
                                         num_workers=opt.num_workers,
                                         shuffle=True,
                                         drop_last=True)

    lr1, lr2 = opt.lr1, opt.lr2
    optimizer = model.get_optimizer(lr1, lr2)
    loss_meter = tnt.meter.AverageValueMeter()
    pre_loss = 1e100
    model.save()
    for epoch in range(opt.max_epoch):

        loss_meter.reset()
        start = time.time()

        for ii, (img, gt, weight) in tqdm(enumerate(dataloader)):
            optimizer.zero_grad()
            img = t.autograd.Variable(img).cuda()
            target = t.autograd.Variable(gt).cuda()
            weight = t.autograd.Variable(weight).cuda()
            outputs = model(img)
            loss, loss_list = l2_loss(outputs, target, weight)
            (loss).backward()
            loss_meter.add(loss.data[0])
            optimizer.step()

            # 可视化, 记录, log,print
            if ii % opt.plot_every == 0 and ii > 0:
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()
                vis_plots = {'loss': loss_meter.value()[0], 'ii': ii}
                vis.plot_many(vis_plots)

                # 随机展示一张图片
                k = t.randperm(img.size(0))[0]
                show = img.data[k].cpu()
                raw = (show * 0.225 + 0.45).clamp(min=0, max=1)

                train_masked_img = mask_img(raw, outputs[-1].data[k][14])
                origin_masked_img = mask_img(raw, gt[k][14])

                vis.img('target', origin_masked_img)
                vis.img('train', train_masked_img)
                vis.img('label', gt[k][14])
                vis.img('predict', outputs[-1].data[k][14].clamp(max=1, min=0))
                paf_img = tool.vis_paf(raw, gt[k][15:])
                train_paf_img = tool.vis_paf(
                    raw, outputs[-1][k].data[15:].clamp(min=-1, max=1))
                vis.img('paf_train', train_paf_img)
                #fig = tool.show_paf(np.transpose(raw.cpu().numpy(),(1,2,0)),gt[k][15:].cpu().numpy().transpose((1,2,0))).get_figure()
                #paf_img = tool.fig2data(fig).astype(np.int32)
                #vis.img('paf',t.from_numpy(paf_img/255).float())
                vis.img('paf', paf_img)
        model.save(loss_meter.value()[0])
        vis.save([opt.env])