Esempio n. 1
0
def plotPredictError():
    filePart0 = ["F:\\one\\predict\\GM/wc", "F:\\one\\final\\inmin/workload"]
    wrFile = WRFile()
    filePart1 = [".xlsx", "inmin.xlsx"]
    x = []
    x_label = []
    k = 0
    for i in range(53, 61):
        predict = wrFile.readDataFromExcel(filePath=filePart0[0] + str(i) +
                                           filePart1[0])
        data = wrFile.readDataFromExcel(filePath=filePart0[1] + str(i) +
                                        filePart1[1])
        dis = (predict - data) / data * 100
        over = []
        under = []
        for j in range(len(dis)):
            if dis[j] > 0:
                over.append(dis[j])
            else:
                under.append(-dis[j])
        #x.insert(k,over)
        k += 1
        x.insert(k, under)
        x_label.append(str(i) + "-o")
        #x_label.append(str(i)+"-u")

    plt.boxplot(x=x,
                labels=(53, 54, 55, 56, 57, 58, 59, 60),
                notch=True,
                patch_artist=True)
    plt.grid(True)
    plt.title("analyze the under-prediction error of Grey Model")
Esempio n. 2
0
 def learnChangeRate(self,day):
     wrFile = WRFile()
     day = int(day)
     windows = 3
     part0 = "F:\\one\\predict\\traindata/workload"
     part1 = "inmin.xlsx"
     
     if day <=53:
         data = wrFile.readDataFromExcel(part0+str(53)+part1)
         self.changeRate = np.zeros(len(data)-1)
     elif day>53:
         if (day-windows)<53:
             windows = day-53+1
         else:
             windows+=1
         cr = np.zeros(1440-1)
         #print("day is",day,"windows is",windows)
         
         for i in range(1,windows):
             data = wrFile.readDataFromExcel(part0+str(day-i)+part1)
             cr += np.diff(data)/data[:len(data)-1]
         self.changeRate = cr/(windows-1)
         #print("windows is",windows-1)
     #plt.plot(np.arange(len(self.changeRate)),self.changeRate)
         
Esempio n. 3
0
def lowPearson():
    filePart0 = [
        "F:\\one\\predict\\GM/wc", "F:\\one\\final\\inmin/workload",
        "F:\\one\\final\inmin\\knots/workload"
    ]
    wrFile = WRFile()
    filePart1 = [".xlsx", "inmin.xlsx", "inmin_knots.xlsx"]
    Hours = [[15, 17, 19, 21], [15, 17, 21], [17], [14, 22], [14, 22],
             [17, 19, 22], [14, 15, 16, 20, 22], [14, 16, 21]]
    CRinLowP = []
    PRinLowP = []
    x = []
    DatainLowP = np.zeros(60 * 8 * 24)
    PredinLowP = np.zeros(60 * 8 * 24)
    for i in range(53, 61):
        day = i - 53
        predict = wrFile.readDataFromExcel(filePath=filePart0[0] + str(i) +
                                           filePart1[0])
        data = wrFile.readDataFromExcel(filePath=filePart0[1] + str(i) +
                                        filePart1[1])
        CR = np.diff(data) / data[:len(data) - 1] * 100  #计算负载的变化率
        PR = (predict - data) / data * 100  #计算预测精度
        PR = PR[1:]

        #定位到指定时刻
        h = 0
        while h < len(Hours[day]):
            time = (Hours[day])[h] * 60
            CRinLowP.extend(CR[time:time + 60])
            PRinLowP.extend(PR[time:time + 60])
            #DatainLowP[time:time+60] = data[time:time+60]
            #PredinLowP[day*60*24+time:day*60*24+time+60] = predict[time:time+60]

            for minu in range(60):
                x.append(str(i) + "-" + str((Hours[day])[h]) + ":" + str(minu))
            h += 1

    plt.plot(np.arange(len(CRinLowP)), CRinLowP, "m-")
    plt.plot(np.arange(len(PRinLowP)), PRinLowP, "g*")
    #plt.plot(x,DatainLowP)
    #plt.plot(x,PredinLowP)
    plt.legend(["CR", "PR"])
    plt.grid(True)
    plt.title(
        "changement rate of workloads and prediction precision within low Pearson"
    )
    return PredinLowP
    '''
Esempio n. 4
0
def analyzePandR():
    filePart0 = [
        "F:\\one\\predict\\GM/wc", "F:\\one\\final\\inmin/workload",
        "F:\\one\\final\inmin\\knots/workload"
    ]
    wrFile = WRFile()
    filePart1 = [".xlsx", "inmin.xlsx", "inmin_knots.xlsx"]
    p_coefficient = []
    for i in range(53, 61):
        predict = wrFile.readDataFromExcel(filePath=filePart0[0] + str(i) +
                                           filePart1[0])
        #result = TestGreyModel(periods = 4 ,filePath = filePart0[2]+str(i)+filePart1[2])
        data = wrFile.readDataFromExcel(filePath=filePart0[1] + str(i) +
                                        filePart1[1])
        print("day ", i)
        p_coefficient.extend(analyzeChangeRateAndPrecition(data, predict))
Esempio n. 5
0
def anaylzeDelayDistribution():
    wrFile = WRFile()
    #process_type = "SQ"
    filePath_head = "D:\\cloudsim\\log\\"+process_type+"_q"+"/"+process_type+"_q"
    QL_delay_result =[]
    for QL in [55,60,66,70,75]:#以文件为单位进行分析
        delay_result = np.zeros(6)
        filePath = filePath_head+str(QL)+"/Cloudlet/"+process_type+"53cloudlet.xlsx"
        print(filePath)
        delay = wrFile.readDataFromExcel(filePath = filePath,sheet_name = "sheet",min_cols = 9,max_cols = 9)
        for element in delay: #分析每个请求的延迟情况
            if element==-1:
                continue
            elif element<=0.11:
                delay_result[0]+=1
            elif element<=0.22:
                delay_result[1]+=1
            elif element<=0.33:
                delay_result[2]+=1            
            elif element<=0.44:
                delay_result[3]+=1  
            elif element<=0.55:
                delay_result[4]+=1  
            else:
                delay_result[5]+=1         
        delay_result[0] = round(1.0*delay_result[0]/len(delay),3)
        delay_result[1] = round(1.0*delay_result[1]/len(delay),3)
        delay_result[2] = round(1.0*delay_result[2]/len(delay),3)
        delay_result[3] = round(1.0*delay_result[3]/len(delay),3)
        delay_result[4] = round(1.0*delay_result[4]/len(delay),3)
        delay_result[5] = round(1.0*delay_result[5]/len(delay),3)
        delay_result = delay_result.tolist()
        QL_delay_result.append(delay_result)
    return QL_delay_result
def caculateSumOfSeperateDelay(filePath, cols):
    wrFile = WRFile()
    data = np.array(
        wrFile.readDataFromExcel(filePath=filePath,
                                 min_cols=cols,
                                 max_cols=cols))
    data_sum = np.sum(data)
    return data_sum
Esempio n. 7
0
    def __init__(self):

        filePath = "F:/test/workload.xlsx"
        wrFile = WRFile()
        self.workload = wrFile.readDataFromExcel(filePath=filePath,
                                                 sheet_name="1")
        data = self.evaluateBurst()
        data = data / np.max(data)
        wrFile.writeDataIntoExcel(data=data, filePath="F:/test/avgsampEn.xlsx")
def analyzeCompareResult(q):
    wrFile = WRFile()
    #fileKind = "F:\\data\\experiment/Delay_SQ_q"
    fileKind = "F:\\data\\experiment/Delay_q"
    x = wrFile.readDataFromExcel(filePath=fileKind + str(q) + ".xlsx",
                                 min_cols=1,
                                 max_cols=1)
    y = wrFile.readDataFromExcel(filePath=fileKind + str(q) + ".xlsx",
                                 min_cols=2,
                                 max_cols=2)
    z = wrFile.readDataFromExcel(filePath=fileKind + str(q) + ".xlsx",
                                 min_cols=3,
                                 max_cols=3)
    a = wrFile.readDataFromExcel(filePath=fileKind + str(q) + ".xlsx",
                                 min_cols=5,
                                 max_cols=5)
    #plot4DSeperate(x,y,z,a,q)
    PlotData().plot4D(x, y, z, a, q)
Esempio n. 9
0
def analyzePredictionPrecision():
    objFileName = "svr_rbf"
    precision = []# 列表头分别为 ratio,max,mean
    wrFile = WRFile()
    objFilePath = "F:\\FIFA\\predict\\"+objFileName+"/precision_over.xlsx"
    predict = wrFile.readDataFromExcel(objFilePath,min_cols = 1,max_cols = 3)
    predict = predict.reshape(3,8)
    result = [np.average(predict[0]),np.average(predict[1]),np.average(predict[2])]
    wrFile.writeDataIntoExcel(data = result,filePath = "F:\\FIFA\\predict\\"+objFileName+"/precision_over_evaluate.xlsx" )
Esempio n. 10
0
def useCubicSplineFitData():
    
    #读取数据
    wrFile = WRFile()
    filePath = "F:/one/final/spline/workload51inmin_knots.xlsx"
    yaxis = np.array(wrFile.readDataFromExcel(filePath))
    period = 5
    
   #使用cubic spline进行拟合
    data_volume = len(yaxis)
    xaxis = np.arange(0,data_volume,1)*period
    s = UnivariateSpline(x = xaxis,y = yaxis)
    
  #使用spline的拟合结果对每分钟的并发量进行预测,并获取残差
    y = wrFile.readDataFromExcel(filePath = "F:/one/final/inmin/workload51inmin.xlsx")
    xnew =  np.arange(0,len(y),1)
    ynew = s(xnew)
    residual = ynew-y
    plt.plot(xnew,residual)
Esempio n. 11
0
def plotData(method):
   wrFile = WRFile()
   data_filePath = "F:\\FIFA\\predict\\traindata/day53_60inmin.xlsx"
   data = wrFile.readDataFromExcel(filePath = data_filePath)

   predict_filePath = "F:\\FIFA\\predict\\"+method+"/wc53_60.xlsx"
   if method=="lr":
       method = "LinearRegression"
   elif method=="gbdt":
       method = "Gradient Boosting Decision Tree"
   elif method=="svr_lr":
       method = "Support Vector Regression-linear"
   elif method=="svr_rbf":
       method = "Support Vector Regression-rbf"       
   predict = np.floor(np.array(wrFile.readDataFromExcel(filePath = predict_filePath)))
   plt.plot(np.arange(len(data)),data,"m",LineWidth=2)
   plt.plot(np.arange(len(predict)),predict,"g",LineWidth=2)
   plt.title("prediction results of "+method,fontsize = 20)
   plt.xlabel("time(minute)",fontsize= 18)
   plt.ylabel("workload(times)",fontsize=18)
   plt.legend(["real","predict"],loc = "upper left",fontsize=18)
Esempio n. 12
0
def TestGreyModel(periods, filePath):
    grey = GreyForecastModel()
    wrFile = WRFile()
    data = wrFile.readDataFromExcel(filePath=filePath)
    predict = []
    predict[0:periods - 1] = data[0:periods - 1]

    for i in range(periods - 1, len(data)):
        #we set n as 4
        x = data[i - (periods - 1):i + 1]
        #print(x)
        predict.append(grey.predictValue(x))

    return [data, predict]
def divideSpace(q):
    #以数据为中心,然后把每个点定位到一个立方体中。立方体用一个三维数组表示。
    better = np.zeros(q**3).reshape(q, q, q)
    worse = np.zeros(q**3).reshape(q, q, q)
    equal = np.zeros(q**3).reshape(q, q, q)
    wrFile = WRFile()
    #用正方体左下角的点代替整个正方体
    fileKind = "F:\\data\\experiment/Delay_q"
    #fileKind = "F:\\data\\experiment/Delay_q"
    x = wrFile.readDataFromExcel(filePath=fileKind + str(q) + ".xlsx",
                                 min_cols=1,
                                 max_cols=1)
    y = wrFile.readDataFromExcel(filePath=fileKind + str(q) + ".xlsx",
                                 min_cols=2,
                                 max_cols=2)
    z = wrFile.readDataFromExcel(filePath=fileKind + str(q) + ".xlsx",
                                 min_cols=3,
                                 max_cols=3)
    a = wrFile.readDataFromExcel(filePath=fileKind + str(q) + ".xlsx",
                                 min_cols=5,
                                 max_cols=5)
    for i in range(len(x)):
        c = [x[i], y[i], z[i]]
        c = moveDown(c)
        result = a[i]
        if result == 0:
            equal[c[0]][c[1]][c[2]] += 1
        elif result == 1:
            better[c[0]][c[1]][c[2]] += 1
        else:
            worse[c[0]][c[1]][c[2]] += 1

    #print("better is",better)
    #print("worse is",worse)
    #print("equal is",equal)
    analyzeResult(q, better, worse)
Esempio n. 14
0
def analyzePrecision():
    fileList = ["RGM/","FGM/","FFGM/","GM/","MGM/","MRGM/"]
    part0 = "F:\\one\\predict\\"
    part1 = ".xlsx"
    
    part2 = "F:\\one\\predict\\traindata/workload"
    part3 = "inmin.xlsx"
    
    wrFile = WRFile()
    k = 0
    title = ["MAE","EVS"]
    rows = 9
    cols = 3
    while k<6:
        result = []
        for day in range(53,61):
            data = wrFile.readDataFromExcel(filePath = part2+str(day)+part3)
            predict = wrFile.readDataFromExcel(filePath = part0+fileList[k]+"wc"+str(day)+part1)
            MAE = mean_absolute_error(y_true = data, y_pred = predict)
            EVS =explained_variance_score(y_true = data, y_pred = predict)
            result.append({"MAE":MAE,"EVS":EVS})
        
        wrFile.writeDictIntoTable(data = result,filePath= part0+fileList[k]+"precision.docx" ,title = title ,cols = cols,rows = rows)
        k+=1
def analyzeStats():
    qList = [2, 3, 4, 5, 6]
    wrFile = WRFile()
    result = []
    for q in qList:
        fileName = "F:\data\experiment/Delay_SQ_q" + str(q) + ".xlsx"
        data = wrFile.readDataFromExcel(filePath=fileName,
                                        sheet_name="1",
                                        min_cols=4,
                                        max_cols=4)
        r = getStatisticAttribute(data)
        result.append(r)
    #print("ATBM is",result)
    wrFile.writeDataIntoExcel(
        result, filePath="F:\data\experiment/Delay_SQ_stats.xlsx")
Esempio n. 16
0
def splitOnlineData():
    shopName = ["京东商城", "天猫商城", "亚马逊商城", "淘宝商城"]
    #读出所有数据,然后都存放到
    # 1.生成日期数据

    wrFile = WRFile()
    data = wrFile.readDataFromExcel(filePath="F:\\data\\orginal\\online.xlsx",
                                    sheet_name="online",
                                    cols=3)
    #2. 对数据进行切片
    jingdong = []
    tmall = []
    amazon = []
    taobao = []
    for i in range(len(data)):
        count = i % 4
        if count == 0:
            if data[i] > 0:
                jingdong.append(data[i])
            else:
                jingdong.append(data[i - 4])
        elif count == 1:
            if data[i] > 0:
                tmall.append(data[i])
            else:
                tmall.append(data[i - 4])
        elif count == 2:
            if data[i] > 0:
                amazon.append(data[i])
            else:
                amazon.append(data[i - 4])
        elif count == 3:
            if data[i] > 0:
                taobao.append(data[i])
            else:
                taobao.append(data[i - 4])
    #3.将数据写入excel
    fileRoot = "F:\\data\\online/"
    filesuffix = ".xlsx"
    wrFile.writeDataIntoExcel(data=jingdong,
                              filePath=fileRoot + "jingdong" + filesuffix)
    wrFile.writeDataIntoExcel(data=tmall,
                              filePath=fileRoot + "tmall" + filesuffix)
    wrFile.writeDataIntoExcel(data=amazon,
                              filePath=fileRoot + "amazon" + filesuffix)
    wrFile.writeDataIntoExcel(data=taobao,
                              filePath=fileRoot + "taobao" + filesuffix)
Esempio n. 17
0
def testGM():
    wrFile = WRFile()
    part0 = "F:\\one\\predict\\traindata/workload"
    part1 = "inmin.xlsx"
    data = wrFile.readDataFromExcel(filePath=part0 + str(53) + part1, cols=1)

    data_start = 1020
    data_end = 1050
    burst = [
        62521, 62039, 61101, 66726, 64129, 61820, 63928, 63368, 61212, 60820,
        59900, 62070, 62238, 61918, 61982, 64066, 65818, 63337, 65027, 64501,
        68320, 80460, 63368, 61212, 60820, 59900, 62070, 62521, 62039, 61101,
        66726
    ]
    x = np.arange(0, len(burst))
    #使用GM进行预测
    periods = 5
    GM = ModifiedGreyForecastModel(periods=periods)

    start = data_start
    pre_list = []
    start = 1
    for i in range(periods, len(burst)):
        x_0 = burst[start:i]

        pre = GM.predictGMValue(x_0)

        pre_list.append(pre)
        start += 1

    plt.plot(x, burst, "b-*")
    plt.plot(np.arange(periods, periods + len(pre_list)), pre_list, "r-*")
    plt.legend(["real", "predict"])
    plt.xlabel("time in minutes")
    plt.ylabel("workloads")
    plt.title("Prediction With GM")
        c = moveDown(c)
        result = a[i]
        if result == 0:
            equal[c[0]][c[1]][c[2]] += 1
        elif result == 1:
            better[c[0]][c[1]][c[2]] += 1
        else:
            worse[c[0]][c[1]][c[2]] += 1

    #print("better is",better)
    #print("worse is",worse)
    #print("equal is",equal)
    analyzeResult(q, better, worse)


#divideSpace(q)
#getStatisticAttribute(q)
#analyzeStats()

wrFile = WRFile()
data = wrFile.readDataFromExcel(
    filePath="D:\\cloudsim\\log\\workload1/taobao.xlsx",
    min_cols=1,
    max_cols=1,
    sheet_name="1")
data = np.floor((np.array(data) / 100))
#print(data)
wrFile.writeDataIntoExcel(
    data=data, filePath="D:\\cloudsim\\log\\workload1/deplete_taobao.xlsx")
print(np.percentile(np.array(data), 80))
Esempio n. 19
0
def analyzeReadData():
    filePath = "F:/test/workload63_69.xlsx"
    wrFile = WRFile()
    wrFile.readDataFromExcel(filePath=filePath, sheet_name="1")
def test(q):
    wrFile = WRFile()
    ATBM_file = "F:\data\experiment/Seperate_Delay_ATBM_q" + str(q) + ".xlsx"
    SQ_file = "F:\data\experiment/Seperate_Delay_SQ_q" + str(q) + ".xlsx"
    '''atbm = wrFile.readDataFromExcel2(filePath = ATBM_file)
    sq = wrFile.readDataFromExcel2(filePath = SQ_file)
    for i in range(len(atbm)):
        atbm_data = atbm[i]
        sq_data = sq[i]
        print(atbm_data)
        print(sq_data)
        print(np.sum(atbm_data[3:])-np.sum(sq_data[3:]))
        if np.sum(atbm_data[3:])!= np.sum(sq_data[3:]):
            print(atbm_data[:3])
    '''


wrFile = WRFile()
taobao = wrFile.readDataFromExcel(
    filePath="D:\\cloudsim\\log\\workload1/taobao.xlsx")
FIFA = wrFile.readDataFromExcel(
    filePath="F:\\FIFA\\predict\\traindata\\inmin/workload53inmin.xlsx")
plt.plot(np.arange(len(FIFA)), FIFA, "k")
plt.legend([u'并发量'], fontsize=18, loc="upper left")
plt.xlabel(u"时间/分钟", fontsize=18)
plt.ylabel(u"并发量/次", fontsize=18)
plt.grid(True)
plt.title(u"1998年世界杯期间5月17日的用户并发量数据")
#plotDelayDistribution(q)
#q = 6
#plotDelayDistribution(q)
Esempio n. 21
0
def compareModel():
    fileStart = "F:\\one\\final\\inmin/workload"
    fileEnd = "inmin.xlsx"
    wrFile = WRFile()

    #fft = FFTPredict()
    #noBurst_pre = fft.FFTofNoBurst(data51 , data52 )
    #WFD_pre = fft.FFTofWFD(data51 , data52 )
    periods = 10
    for i in range(53, 61):
        result = TestGreyModel(periods, filePath=fileStart + str(i) + fileEnd)
        predict = result[1]
        print(i)
        wrFile.writeDataIntoExcel(data=predict,
                                  filePath="F:/one/predict/GM/wc" + str(i) +
                                  ".xlsx")


#compareModel()

wrFile = WRFile()
#predict = wrFile.readDataFromExcel("F:\\one\\predict\\GM/wc53_60.xlsx")
data = wrFile.readDataFromExcel(
    "F:\\one\\predict\\traindata/workload54inmin.xlsx")
predict = wrFile.readDataFromExcel("F:\\one\\predict\\GM/wc54.xlsx")
plt.plot(np.arange(len(data)), data)
plt.plot(np.arange(len(predict)), predict)
plt.legend(["r-w", "p-w"])
plt.title("prediction result for day 54 by GM ")
Esempio n. 22
0
 def getData(self,filePath):
     wrFile = WRFile()
     data = wrFile.readDataFromExcel(filePath,cols=1)
     return data
Esempio n. 23
0
                amazon.append(data[i - 4])
        elif count == 3:
            if data[i] > 0:
                taobao.append(data[i])
            else:
                taobao.append(data[i - 4])
    #3.将数据写入excel
    fileRoot = "F:\\data\\online/"
    filesuffix = ".xlsx"
    wrFile.writeDataIntoExcel(data=jingdong,
                              filePath=fileRoot + "jingdong" + filesuffix)
    wrFile.writeDataIntoExcel(data=tmall,
                              filePath=fileRoot + "tmall" + filesuffix)
    wrFile.writeDataIntoExcel(data=amazon,
                              filePath=fileRoot + "amazon" + filesuffix)
    wrFile.writeDataIntoExcel(data=taobao,
                              filePath=fileRoot + "taobao" + filesuffix)


wrFile = WRFile()
fileName = "taobao"
data = wrFile.readDataFromExcel(filePath="F:\\data\\online/" + fileName +
                                ".xlsx",
                                sheet_name="Sheet1",
                                cols=2)
pre = wrFile.readDataFromExcel(filePath="F:\\data\\online\\predict/exp.xlsx",
                               sheet_name="Sheet1",
                               cols=3)
plt.plot(np.arange(len(data)), data)
plt.plot(np.arange(len(pre)), pre)
plt.legend(["r", "p"])
Esempio n. 24
0
        self._delayTime = np.copy(self.time)
        for i in range(0,self.windows):
            temp_requests+=self.workload[i]
            temp = (temp_requests-self.c0)/r-(self.time[i]-self.t0)
            if temp<0:
                temp = 0
            self._delayTime[i] += temp        
    
    
    def GiveQComputRB(self,q):
        pass
#*************创建测试数据集********************
wrFile = WRFile()
filePath = "F:/result.xlsx"
cols = 1
data = wrFile.readDataFromExcel(filePath,cols,sheet_name = 2)
#data[6] = 200
time = np.arange(0,len(data))
result = np.vstack([data,time])
r = 400
b = 450
print("r is ",r,"b is" ,b)
#*************测试请求切分效果***********************
lager = LagerRequest(result,r =r)
q = 50

        #请求达到后,队列的存储情况
rrange = lager.computeRRange()

sample = np.linspace(rrange[0],rrange[1],2)
b_result = []
Esempio n. 25
0
                delay_result[4]+=1  
            else:
                delay_result[5]+=1         
        delay_result[0] = round(1.0*delay_result[0]/len(delay),3)
        delay_result[1] = round(1.0*delay_result[1]/len(delay),3)
        delay_result[2] = round(1.0*delay_result[2]/len(delay),3)
        delay_result[3] = round(1.0*delay_result[3]/len(delay),3)
        delay_result[4] = round(1.0*delay_result[4]/len(delay),3)
        delay_result[5] = round(1.0*delay_result[5]/len(delay),3)
        delay_result = delay_result.tolist()
        QL_delay_result.append(delay_result)
    return QL_delay_result
'''wrFile = WRFile()
process_type = "ATBM"
data = anaylzeDelayDistribution()
wrFile.writeDataIntoExcel(data =  data,filePath ="D:\\cloudsim\\log\\"+process_type+"_q"+"/"+process_type+"_delay_distribution.xlsx" )
'''
wrFile = WRFile()
predict_type="lr"
data = wrFile.readDataFromExcel(filePath="F:\\FIFA\\final\\inmin/workload53_60inmin.xlsx")
predict = wrFile.readDataFromExcel(filePath="F:\\FIFA\\predict\\"+predict_type+"/wc53_60.xlsx")
plt.plot(np.arange(len(data)),data,"k")
plt.plot(np.arange(len(data)),predict,"wo")
plt.legend(["real","predict"],fontsize=16,loc="upper left")
plt.title("prediction results of "+predict_type,fontsize=20)
plt.xlabel("time(minute)",fontsize=18)
plt.xticks(fontsize = 16)
plt.ylabel("workloads",fontsize=18)
plt.yticks(fontsize = 16)
plt.savefig("E:\\"+ u"日常工作"+"\\"+u"下一代计算机技术"+"\\"+u"重要照片"+"\\"+u"各类算法的预测结果"+"/"+predict_type+".jpeg")
Esempio n. 26
0
def testReadData():
    wrFile = WRFile()
    data = wrFile.readDataFromExcel(filePath="F:/test/workload.xlsx")
    data = np.array(data)
Esempio n. 27
0
@author: User
"""
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.append("D:/anaconda/project/utils")
from utils import WRFile
from scipy.stats.stats import pearsonr
import scipy.fftpack as fft
import pandas as pd
'''设置初始的数据值'''
fileStart = "F:\\one\\final\\inmin/knots/workload"
fileEnd = "inmin_knots.xlsx"
wrFile = WRFile()
data51 = wrFile.readDataFromExcel(filePath=fileStart + "51" + fileEnd)
data52 = wrFile.readDataFromExcel(filePath=fileStart + "52" + fileEnd)
data53 = wrFile.readDataFromExcel(filePath=fileStart + "53" + fileEnd)
data54 = wrFile.readDataFromExcel(filePath=fileStart + "54" + fileEnd)
data_volume = len(data51)
x = np.arange(0, data_volume)


def useAverage(dataA=data51, dataB=data52, dataC=data53):
    predict = (dataA + dataB) / 2
    #plt.plot(x,predict)
    #plt.plot(x,dataC)
    #plt.legend(["p_w","r_w"])
    #plt.title("use average of dataA and dataB")
    presicion = pearsonr(predict.real, dataC)
    return [predict, presicion]
Esempio n. 28
0
    def inc_dec(self, begin, slope, fluctuation, amount):
        middle = amount / 2
        data0 = begin + slope * np.arange(middle)
        data1 = np.max(data0) - slope * np.arange(middle, amount)
        data = np.append(data0, data1) + np.random.randint(
            -1 * fluctuation, fluctuation + 1, amount)
        return data

    def dec_inc(self, begin, slope, fluctuation, amount):
        middle = amount / 2
        data0 = begin - slope * np.arange(middle)
        data1 = np.min(data0) + slope * np.arange(middle, amount)
        data = np.append(data0, data1) + np.random.randint(
            -1 * fluctuation, fluctuation + 1, amount)
        return data


wrFile = WRFile()
file_List = [
    "stationary", "inc", "dec", "flat_dec", "flat_inc", "inc_dec", "dec_inc"
]
data = wrFile.readDataFromExcel(
    filePath="D:\\cloudsim\\log\\workload1/synthetic/" + file_List[0] +
    ".xlsx")
plt.plot(np.arange(len(data)), data, "k")
plt.title(u"平稳型并发量数据")
plt.xlabel(u"时间", fontsize=18)
plt.ylabel(u"并发量数量", fontsize=18)
plt.ylim(0, 60)
plt.legend(["并发量"], loc='upper left')
Esempio n. 29
0
 def __init__(self, filePath):
     wrFile = WRFile()
     self.data = numpy.array(
         wrFile.readDataFromExcel(filePath=filePath, cols=1))
Esempio n. 30
0
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 26 11:22:48 2016

@author: User
"""
import matplotlib.pyplot as plt
from utils import WRFile

wrFile = WRFile()

filePath = "F:/lab/source/data/library/1.xlsx"
cols = 1
original_data = wrFile.readDataFromExcel(filePath=filePath,
                                         cols=cols,
                                         sheet_name="1")
print(original_data)
#把数据以100为单位进行切分
'''segement = -1
segement_data = []
for i in range(len(original_data)):
    if i%500==0:
        segement = segement+1
        if(segement!=1):
            wrFile.writeDataIntoExcel(data = segement_data,filePath = filePath,cols = segement,sheet_index = 1)
            segement_data.clear()
        print(segement)
    segement_data.append(original_data[i])
'''