Esempio n. 1
0
        act_index = 0
        act_fills = []
        for num_step in range(num_processing_steps):
            act_fill = []
            for batch_seq in range(batch_size_tr):
                act_fill.append(action_storage[acts[batch_seq][num_step]])
            act_fills.append(act_fill)
        act_fills = np.array(act_fills)


        state_losses_supervise = getFinalState(state)
        graph_dicts = []
        for j in range(batch_size_tr):
            input_g = base_graph(state[j][0], grounding_size, first_action, dimension,proposition_nodes)
            graph_dicts.append(input_g)
        feed_dicts = utils_tf.get_feed_dict(
            graphs_tuple_ph, utils_np.data_dicts_to_graphs_tuple(graph_dicts))
        feed_dicts[realstate] = state_losses_supervise
        feed_dicts[action_filled] = act_fills



        train_values = sess.run({
            "step": step_op,
            "loss": loss_op_tr,
            "outputs": output_ops_tr,
            "output_graphs":sta_vecs,
            "aaa":graphs_tuple_ph,
            "test":action_filled,
        }, feed_dict=feed_dicts)
        # update action storage
        act_index = 0
Esempio n. 2
0
        act_fills = np.array(act_fills)
        act_fills_index = np.array(act_fills_index)

        state_losses_supervise = getFinalState(state)

        graph_dicts = []
        goal_graph_dicts = []
        for j in range(batch_size_tr):
            input_g = base_graph(state[j][0], grounding_size, first_action,
                                 dimension, proposition_nodes)
            input_goal_g = base_graph(state[j][num_processing_steps],
                                      grounding_size, first_action, dimension,
                                      proposition_nodes)
            graph_dicts.append(input_g)
            goal_graph_dicts.append(input_goal_g)
        feed_dicts = utils_tf.get_feed_dict(
            graphs_tuple_ph, utils_np.data_dicts_to_graphs_tuple(graph_dicts))
        goal_feed_dicts = utils_tf.get_feed_dict(
            graphs_tuple_goal,
            utils_np.data_dicts_to_graphs_tuple(goal_graph_dicts))
        feed_dicts.update(goal_feed_dicts)
        feed_dicts[realstate] = state_losses_supervise
        feed_dicts[action_filled] = act_fills
        feed_dicts[action_filled_index] = act_fills_index
        train_values = sess.run(
            {
                "update_para": update_para,
                "loss": loss_heu,
                "outputs": output_ops_tr,
                "heuristic": heuristic_output,
                "training_output": training_output,
            },