Esempio n. 1
0
def bearing_(a1, b1, a2, b2, final=False, wrap=False):
    '''Compute the initial or final bearing (forward or reverse
       azimuth) between a (spherical) start and end point.

       @param a1: Start latitude (C{radians}).
       @param b1: Start longitude (C{radians}).
       @param a2: End latitude (C{radians}).
       @param b2: End longitude (C{radians}).
       @keyword final: Return final bearing if C{True}, initial
                       otherwise (C{bool}).
       @keyword wrap: Wrap and L{unrollPI} longitudes (C{bool}).

       @return: Initial or final bearing (compass C{radiansPI2}) or
                zero if start and end point coincide.
    '''
    if final:
        a1, b1, a2, b2 = a2, b2, a1, b1
        r = PI + PI2
    else:
        r = PI2

    db, _ = unrollPI(b1, b2, wrap=wrap)
    ca1, ca2, cdb = map1(cos, a1, a2, db)
    sa1, sa2, sdb = map1(sin, a1, a2, db)

    # see <http://MathForum.org/library/drmath/view/55417.html>
    x = ca1 * sa2 - sa1 * ca2 * cdb
    y = sdb * ca2

    return (atan2(y, x) + r) % PI2  # wrapPI2
Esempio n. 2
0
    def crossingParallels(self, other, lat, wrap=False):
        '''Return the pair of meridians at which a great circle defined
           by this and an other point crosses the given latitude.

           @param other: The other point defining great circle (L{LatLon}).
           @param lat: Latitude at the crossing (C{degrees}).
           @keyword wrap: Wrap and unroll longitudes (C{bool}).

           @return: 2-Tuple (lon1, lon2) in (C{degrees180}) or C{None}
                    if the great circle doesn't reach the given I{lat}.
        '''
        self.others(other)

        a1, b1 = self.to2ab()
        a2, b2 = other.to2ab()

        a = radians(lat)
        db, b2 = unrollPI(b1, b2, wrap=wrap)

        ca, ca1, ca2, cdb = map1(cos, a, a1, a2, db)
        sa, sa1, sa2, sdb = map1(sin, a, a1, a2, db)

        x = sa1 * ca2 * ca * sdb
        y = sa1 * ca2 * ca * cdb - ca1 * sa2 * ca
        z = ca1 * ca2 * sa * sdb

        h = hypot(x, y)
        if h < EPS or abs(z) > h:
            return None  # great circle doesn't reach latitude

        m = atan2(-y, x) + b1  # longitude at max latitude
        d = acos1(z / h)  # delta longitude to intersections

        return degrees180(m - d), degrees180(m + d)
Esempio n. 3
0
def _x3d2(start, end, wrap, n):
    # see <http://www.EdWilliams.org/intersect.htm> (5) ff
    a1, b1 = start.to2ab()

    if isscalar(end):  # bearing, make a point
        a2, b2 = _destination2_(a1, b1, PI_4, radians(end))
    else:  # must be a point
        _Trll.others(end, name='end' + n)
        a2, b2 = end.to2ab()

    db, b2 = unrollPI(b1, b2, wrap=wrap)
    if max(abs(db), abs(a2 - a1)) < EPS:
        raise ValueError('intersection %s%s null: %r' % ('path', n,
                                                         (start, end)))

    # note, in EdWilliams.org/avform.htm W is + and E is -
    b21, b12 = db * 0.5, -(b1 + b2) * 0.5

    cb21, cb12 = map1(cos, b21, b12)
    sb21, sb12 = map1(sin, b21, b12)
    sa21, sa12 = map1(sin, a1 - a2, a1 + a2)

    x = Vector3d(sa21 * sb12 * cb21 - sa12 * cb12 * sb21,
                 sa21 * cb12 * cb21 + sa12 * sb12 * sb21,
                 cos(a1) * cos(a2) * sin(db),
                 ll=start)
    return x.unit(), (db, (a2 - a1))  # negated d
Esempio n. 4
0
    def distanceTo(self, other, radius=R_M, wrap=False):
        '''Compute the distance from this to an other point.

           @param other: The other point (L{LatLon}).
           @keyword radius: Optional, mean earth radius (C{meter}).
           @keyword wrap: Wrap and unroll longitudes (C{bool}).

           @return: Distance between this and the I{other} point
                    (C{meter}, same units as I{radius}).

           @raise TypeError: The I{other} point is not L{LatLon}.

           @example:

           >>> p1 = LatLon(52.205, 0.119)
           >>> p2 = LatLon(48.857, 2.351);
           >>> d = p1.distanceTo(p2)  # 404300
        '''
        self.others(other)

        a1, b1 = self.to2ab()
        a2, b2 = other.to2ab()

        db, b2 = unrollPI(b1, b2, wrap=wrap)
        r = haversine_(a2, a1, db)
        return r * float(radius)
Esempio n. 5
0
 def _rads(n, points, closed):  # angular edge lengths in radians
     i, m = _imdex2(closed, n)
     a1, b1 = points[i].to2ab()
     for i in range(m, n):
         a2, b2 = points[i].to2ab()
         db, b2 = unrollPI(b1, b2, wrap=wrap)
         yield haversine_(a2, a1, db)
         a1, b1 = a2, b2
Esempio n. 6
0
 def _exs(n, points):  # iterate over spherical edge excess
     a1, b1 = points[n - 1].to2ab()
     ta1 = tan_2(a1)
     for i in range(n):
         a2, b2 = points[i].to2ab()
         db, b2 = unrollPI(b1, b2, wrap=wrap)
         ta2, tdb = map1(tan_2, a2, db)
         yield atan2(tdb * (ta1 + ta2), 1 + ta1 * ta2)
         ta1, b1 = ta2, b2
Esempio n. 7
0
    def intermediateTo(self, other, fraction, height=None, wrap=False):
        '''Locate the point at given fraction between this and an
           other point.

           @param other: The other point (L{LatLon}).
           @param fraction: Fraction between both points (float, 0.0 =
                            this point, 1.0 = the other point).
           @keyword height: Optional height, overriding the fractional
                            height (C{meter}).
           @keyword wrap: Wrap and unroll longitudes (C{bool}).

           @return: Intermediate point (L{LatLon}).

           @raise TypeError: The I{other} point is not L{LatLon}.

           @example:

           >>> p1 = LatLon(52.205, 0.119)
           >>> p2 = LatLon(48.857, 2.351)
           >>> p = p1.intermediateTo(p2, 0.25)  # 51.3721°N, 000.7073°E

           @JSname: I{intermediatePointTo}.
        '''
        self.others(other)

        a1, b1 = self.to2ab()
        a2, b2 = other.to2ab()

        db, b2 = unrollPI(b1, b2, wrap=wrap)
        r = haversine_(a2, a1, db)
        sr = sin(r)
        if abs(sr) > EPS:
            cb1, cb2, ca1, ca2 = map1(cos, b1, b2, a1, a2)
            sb1, sb2, sa1, sa2 = map1(sin, b1, b2, a1, a2)

            A = sin((1 - fraction) * r) / sr
            B = sin(fraction * r) / sr

            x = A * ca1 * cb1 + B * ca2 * cb2
            y = A * ca1 * sb1 + B * ca2 * sb2
            z = A * sa1 + B * sa2

            a = atan2(z, hypot(x, y))
            b = atan2(y, x)

        else:  # points too close
            a = favg(a1, a2, f=fraction)
            b = favg(b1, b2, f=fraction)

        if height is None:
            h = self._havg(other, f=fraction)
        else:
            h = height
        return self.classof(degrees90(a), degrees180(b), height=h)
Esempio n. 8
0
    def _rads2(n, pts):  # trapezoidal areas in rads**2
        x1, y1, _ = pts[n - 1]
        for i in range(n):
            x2, y2, _ = pts[i]
            w, x2 = unrollPI(x1, x2, wrap=wrap if i < (n - 1) else False)
            # approximate trapezoid by a rectangle, adjusting
            # the top width by the cosine of the latitudinal
            # average and bottom width by some fudge factor
            h = (y2 + y1) * 0.5
            if adjust:
                w *= (cos(h) + 1.2876) * 0.5
            yield h * w  # signed trapezoidal area

            x1, y1 = x2, y2
Esempio n. 9
0
def centroidOf(points, wrap=True, LatLon=None):
    '''Determine the centroid of a polygon.

       @param points: The polygon points (C{LatLon}[]).
       @keyword wrap: Wrap lat-, wrap and unroll longitudes (C{bool}).
       @keyword LatLon: Optional (sub-)class to return the centroid
                        (L{LatLon}) or C{None}.

       @return: Centroid location (I{LatLon}) or as 2-tuple (C{lat, lon})
                in C{degrees} if I{LatLon} is C{None}.

       @raise TypeError: Some I{points} are not C{LatLon}.

       @raise ValueError: Insufficient number of I{points} or I{points}
                          enclose a pole or zero area.

       @see: U{Centroid<http://WikiPedia.org/wiki/Centroid#Of_a_polygon>}
             and U{Calculating The Area And Centroid Of A Polygon
             <http://www.Seas.UPenn.edu/~sys502/extra_materials/
             Polygon%20Area%20and%20Centroid.pdf>}.
    '''
    # setting radius=1 converts degrees to radians
    pts = LatLon2psxy(points, closed=True, radius=1, wrap=wrap)
    n = len(pts)

    A, X, Y = Fsum(), Fsum(), Fsum()

    x1, y1, _ = pts[n-1]
    for i in range(n):
        x2, y2, _ = pts[i]
        if wrap and i < (n - 1):
            _, x2 = unrollPI(x1, x2, wrap=True)
        t = x1 * y2 - x2 * y1
        A += t
        X += t * (x1 + x2)
        Y += t * (y1 + y2)
        # XXX more elaborately:
        # t1, t2 = x1 * y2, -(x2 * y1)
        # A.fadd_(t1, t2)
        # X.fadd_(t1 * x1, t1 * x2, t2 * x1, t2 * x2)
        # Y.fadd_(t1 * y1, t1 * y2, t2 * y1, t2 * y2)
        x1, y1 = x2, y2

    A = A.fsum() * 3.0  # 6.0 / 2.0
    if abs(A) < EPS:
        raise ValueError('polar or zero area: %r' % (pts,))
    Y, X = degrees90(Y.fsum() / A), degrees180(X.fsum() / A)
    return (Y, X) if LatLon is None else LatLon(Y, X)
Esempio n. 10
0
    def distance3To(self, other, radius=R_M, wrap=False):
        '''Compute the great-circle distance between this and an other
           geohash using the U{Haversine
           <http://www.Movable-Type.co.UK/scripts/latlong.html>} formula.

           @param other: The other geohash (L{Geohash}).
           @keyword radius: Optional, mean earth radius (C{meter}).
           @keyword wrap: Wrap and unroll longitudes (C{bool}).

           @return: Great-circle distance (C{meter}, same units as I{radius}).

           @raise TypeError: The I{other} is not a L{Geohash}, C{LatLon}
                             or C{str}.
        '''
        other = _2Geohash(other)

        a1, b1 = self.ab
        a2, b2 = other.ab

        db, b2 = unrollPI(b1, b2, wrap=wrap)
        return haversine_(a2, a1, db) * float(radius)
Esempio n. 11
0
    def midpointTo(self, other, height=None, wrap=False):
        '''Find the midpoint between this and an other point.

           @param other: The other point (L{LatLon}).
           @keyword height: Optional height for midpoint, overriding
                            the mean height (C{meter}).
           @keyword wrap: Wrap and unroll longitudes (C{bool}).

           @return: Midpoint (L{LatLon}).

           @raise TypeError: The I{other} point is not L{LatLon}.

           @example:

           >>> p1 = LatLon(52.205, 0.119)
           >>> p2 = LatLon(48.857, 2.351)
           >>> m = p1.midpointTo(p2)  # '50.5363°N, 001.2746°E'
        '''
        self.others(other)

        # see <http://MathForum.org/library/drmath/view/51822.html>
        a1, b1 = self.to2ab()
        a2, b2 = other.to2ab()

        db, b2 = unrollPI(b1, b2, wrap=wrap)

        ca1, ca2, cdb = map1(cos, a1, a2, db)
        sa1, sa2, sdb = map1(sin, a1, a2, db)

        x = ca2 * cdb + ca1
        y = ca2 * sdb

        a = atan2(sa1 + sa2, hypot(x, y))
        b = atan2(y, x) + b1

        h = self._havg(other) if height is None else height
        return self.classof(degrees90(a), degrees180(b), height=h)
Esempio n. 12
0
def intersection(start1, bearing1, start2, bearing2,
                 height=None, wrap=False, LatLon=LatLon):
    '''Compute the intersection point of two paths each defined
       by a start point and an initial bearing.

       @param start1: Start point of first path (L{LatLon}).
       @param bearing1: Initial bearing from start1 (compass C{degrees360}).
       @param start2: Start point of second path (L{LatLon}).
       @param bearing2: Initial bearing from start2 (compass C{degrees360}).
       @keyword height: Optional height for the intersection point,
                        overriding the mean height (C{meter}).
       @keyword wrap: Wrap and unroll longitudes (C{bool}).
       @keyword LatLon: Optional (sub-)class for the intersection point
                        (L{LatLon}) or C{None}.

       @return: Intersection point (L{LatLon}) or 3-tuple (C{degrees90},
                C{degrees180}, height) if C{LatLon} is C{None}.

       @raise TypeError: Point I{start1} or I{start2} is not L{LatLon}.

       @raise ValueError: Intersection is ambiguous or infinite or
                          the paths are parallel or coincident.

       @example:

       >>> p = LatLon(51.8853, 0.2545)
       >>> s = LatLon(49.0034, 2.5735)
       >>> i = intersection(p, 108.547, s, 32.435)  # '50.9078°N, 004.5084°E'
    '''
    _Trll.others(start1, name='start1')
    _Trll.others(start2, name='start2')

    # see <http://www.EdWilliams.org/avform.htm#Intersection>
    a1, b1 = start1.to2ab()
    a2, b2 = start2.to2ab()

    db, b2 = unrollPI(b1, b2, wrap=wrap)
    r12 = haversine_(a2, a1, db)
    if abs(r12) < EPS:  # [nearly] coincident points
        a, b = map1(degrees, favg(a1, a2), favg(b1, b2))

    else:
        ca1, ca2, cr12 = map1(cos, a1, a2, r12)
        sa1, sa2, sr12 = map1(sin, a1, a2, r12)
        x1, x2 = (sr12 * ca1), (sr12 * ca2)
        if abs(x1) < EPS or abs(x2) < EPS:
            raise ValueError('intersection %s: %r vs %r' % ('parallel', start1, start2))

        # handle domain error for equivalent longitudes,
        # see also functions asin_safe and acos_safe at
        # <http://www.EdWilliams.org/avform.htm#Math>
        t1, t2 = map1(acos1, (sa2 - sa1 * cr12) / x1,
                             (sa1 - sa2 * cr12) / x2)
        if sin(db) > 0:
            t12, t21 = t1, PI2 - t2
        else:
            t12, t21 = PI2 - t1, t2

        t13, t23 = map1(radiansPI2, bearing1, bearing2)
        x1, x2 = map1(wrapPI, t13 - t12,  # angle 2-1-3
                              t21 - t23)  # angle 1-2-3

        sx1, sx2 = map1(sin, x1, x2)
        if sx1 == 0 and sx2 == 0:
            raise ValueError('intersection %s: %r vs %r' % ('infinite', start1, start2))
        sx3 = sx1 * sx2
        if sx3 < 0:
            raise ValueError('intersection %s: %r vs %r' % ('ambiguous', start1, start2))
        cx1, cx2 = map1(cos, x1, x2)

        x3 = acos1(cr12 * sx3 - cx2 * cx1)
        r13 = atan2(sr12 * sx3, cx2 + cx1 * cos(x3))

        a, b = _destination2(a1, b1, r13, t13)

    h = start1._havg(start2) if height is None else height
    return (a, b, h) if LatLon is None else LatLon(a, b, height=h)
Esempio n. 13
0
def intersection(start1,
                 end1,
                 start2,
                 end2,
                 height=None,
                 wrap=False,
                 LatLon=LatLon):
    '''Compute the intersection point of two paths both defined
       by two points or a start point and bearing from North.

       @param start1: Start point of the first path (L{LatLon}).
       @param end1: End point ofthe first path (L{LatLon}) or
                    the initial bearing at the first start point
                    (compass C{degrees360}).
       @param start2: Start point of the second path (L{LatLon}).
       @param end2: End point of the second path (L{LatLon}) or
                    the initial bearing at the second start point
                    (compass C{degrees360}).
       @keyword height: Optional height for the intersection point,
                        overriding the mean height (C{meter}).
       @keyword wrap: Wrap and unroll longitudes (C{bool}).
       @keyword LatLon: Optional (sub-)class for the intersection point
                        (L{LatLon}) or C{None}.

       @return: The intersection point (I{LatLon}) or 3-tuple
                (C{degrees90}, C{degrees180}, height) if I{LatLon}
                is C{None}.  An alternate intersection point might
                be the L{antipode} to the returned result.

       @raise TypeError: Start or end point(s) not L{LatLon}.

       @raise ValueError: Intersection is ambiguous or infinite or
                          the paths are parallel, coincident or null.

       @example:

       >>> p = LatLon(51.8853, 0.2545)
       >>> s = LatLon(49.0034, 2.5735)
       >>> i = intersection(p, 108.547, s, 32.435)  # '50.9078°N, 004.5084°E'
    '''
    _Trll.others(start1, name='start1')
    _Trll.others(start2, name='start2')

    a1, b1 = start1.to2ab()
    a2, b2 = start2.to2ab()

    db, b2 = unrollPI(b1, b2, wrap=wrap)
    r12 = haversine_(a2, a1, db)
    if abs(r12) < EPS:  # [nearly] coincident points
        a, b = map1(degrees, favg(a1, a2), favg(b1, b2))

    # see <http://www.EdWilliams.org/avform.htm#Intersection>
    elif isscalar(end1) and isscalar(end2):  # both bearings
        ca1, ca2, cr12 = map1(cos, a1, a2, r12)
        sa1, sa2, sr12 = map1(sin, a1, a2, r12)
        x1, x2 = (sr12 * ca1), (sr12 * ca2)
        if abs(x1) < EPS or abs(x2) < EPS:
            raise ValueError('intersection %s: %r vs %r' % ('parallel',
                                                            (start1, end1),
                                                            (start2, end2)))

        # handle domain error for equivalent longitudes,
        # see also functions asin_safe and acos_safe at
        # <http://www.EdWilliams.org/avform.htm#Math>
        t1, t2 = map1(acos1, (sa2 - sa1 * cr12) / x1, (sa1 - sa2 * cr12) / x2)
        if sin(db) > 0:
            t12, t21 = t1, PI2 - t2
        else:
            t12, t21 = PI2 - t1, t2

        t13, t23 = map1(radiansPI2, end1, end2)
        x1, x2 = map1(
            wrapPI,
            t13 - t12,  # angle 2-1-3
            t21 - t23)  # angle 1-2-3
        sx1, sx2 = map1(sin, x1, x2)
        if sx1 == 0 and sx2 == 0:  # max(abs(sx1), abs(sx2)) < EPS
            raise ValueError('intersection %s: %r vs %r' % ('infinite',
                                                            (start1, end1),
                                                            (start2, end2)))
        sx3 = sx1 * sx2
        #       if sx3 < 0:
        #           raise ValueError('intersection %s: %r vs %r' % ('ambiguous',
        #                            (start1, end1), (start2, end2)))
        cx1, cx2 = map1(cos, x1, x2)

        x3 = acos1(cr12 * sx3 - cx2 * cx1)
        r13 = atan2(sr12 * sx3, cx2 + cx1 * cos(x3))

        a, b = _destination2(a1, b1, r13, t13)
        # choose antipode for opposing bearings
        if _xb(a1, b1, end1, a, b, wrap) < 0 or \
           _xb(a2, b2, end2, a, b, wrap) < 0:
            a, b = antipode(a, b)

    else:  # end point(s) or bearing(s)
        x1, d1 = _x3d2(start1, end1, wrap, '1')
        x2, d2 = _x3d2(start2, end2, wrap, '2')
        x = x1.cross(x2)
        if x.length < EPS:  # [nearly] colinear or parallel paths
            raise ValueError('intersection %s: %r vs %r' % ('colinear',
                                                            (start1, end1),
                                                            (start2, end2)))
        a, b = x.to2ll()
        # choose intersection similar to sphericalNvector
        d1 = _xdot(d1, a1, b1, a, b, wrap)
        d2 = _xdot(d2, a2, b2, a, b, wrap)
        if (d1 < 0 and d2 > 0) or (d1 > 0 and d2 < 0):
            a, b = antipode(a, b)

    h = start1._havg(start2) if height is None else height
    return (a, b, h) if LatLon is None else LatLon(a, b, height=h)
Esempio n. 14
0
def _xdot(d, a1, b1, a, b, wrap):
    # compute dot product d . (-b + b1, a - a1)
    db, _ = unrollPI(b1, radians(b), wrap=wrap)
    return fdot(d, db, radians(a) - a1)
Esempio n. 15
0
 def _distances(self, x, y):  # (x, y) radians
     for xk, yk in zip(self._xs, self._ys):
         dx, _ = unrollPI(xk, x, wrap=self._wrap)
         if self._adjust:
             dx *= _scaler(yk, y)
         yield dx**2 + (y - yk)**2  # like equirectangular_ distance2
Esempio n. 16
0
 def _distances(self, x, y):  # (x, y) radians
     for xk, yk in zip(self._xs, self._ys):
         d, _ = unrollPI(xk, x, wrap=self._wrap)
         yield haversine_(y, yk, d)
Esempio n. 17
0
def areaOf(points, radius=R_M, wrap=True):
    '''Calculate the area of a (spherical) polygon (with great circle
       arcs joining the points).

       @param points: The polygon points (L{LatLon}[]).
       @keyword radius: Optional, mean earth radius (C{meter}).
       @keyword wrap: Wrap and unroll longitudes (C{bool}).

       @return: Polygon area (C{meter}, same units as I{radius}, squared).

       @raise TypeError: Some I{points} are not L{LatLon}.

       @raise ValueError: Insufficient number of I{points}.

       @note: The area is based on Karney's U{'Area of a spherical polygon'
              <http://osgeo-org.1560.x6.nabble.com/Area-of-a-spherical-polygon-td3841625.html>}.

       @see: L{pygeodesy.areaOf}, L{sphericalNvector.areaOf} and
             L{ellipsoidalKarney.areaOf}.

       @example:

       >>> b = LatLon(45, 1), LatLon(45, 2), LatLon(46, 2), LatLon(46, 1)
       >>> areaOf(b)  # 8666058750.718977

       >>> c = LatLon(0, 0), LatLon(1, 0), LatLon(0, 1)
       >>> areaOf(c)  # 6.18e9
    '''
    n, points = _Trll.points2(points, closed=True)

    # Area method due to Karney: for each edge of the polygon,
    #
    #                tan(Δλ/2) · (tan(φ1/2) + tan(φ2/2))
    #     tan(E/2) = ------------------------------------
    #                     1 + tan(φ1/2) · tan(φ2/2)
    #
    # where E is the spherical excess of the trapezium obtained by
    # extending the edge to the equator-circle vector for each edge

    if iterNumpy2(points):

        def _exs(n, points):  # iterate over spherical edge excess
            a1, b1 = points[n - 1].to2ab()
            ta1 = tan_2(a1)
            for i in range(n):
                a2, b2 = points[i].to2ab()
                db, b2 = unrollPI(b1, b2, wrap=wrap)
                ta2, tdb = map1(tan_2, a2, db)
                yield atan2(tdb * (ta1 + ta2), 1 + ta1 * ta2)
                ta1, b1 = ta2, b2

        s = fsum(_exs(n, points)) * 2

    else:
        a1, b1 = points[n - 1].to2ab()
        s, ta1 = [], tan_2(a1)
        for i in range(n):
            a2, b2 = points[i].to2ab()
            db, b2 = unrollPI(b1, b2, wrap=wrap)
            ta2, tdb = map1(tan_2, a2, db)
            s.append(atan2(tdb * (ta1 + ta2), 1 + ta1 * ta2))
            ta1, b1 = ta2, b2

        s = fsum(s) * 2

    if isPoleEnclosedBy(points):
        s = abs(s) - PI2

    return abs(s * radius**2)