Esempio n. 1
0
def ggr_random_name_splits():
    """
    CommandLine:
        python -m wbia.viz.viz_graph2 ggr_random_name_splits --show

    Ignore:
        sshfs -o idmap=user lev:/ ~/lev

    Example:
        >>> # DISABLE_DOCTEST
        >>> from wbia.viz.viz_graph2 import *  # NOQA
        >>> ggr_random_name_splits()
    """
    import wbia.guitool as gt

    gt.ensure_qtapp()
    # nid_list = ibs.get_valid_nids(filter_empty=True)
    import wbia

    dbdir = '/media/danger/GGR/GGR-IBEIS'
    dbdir = (dbdir if ut.checkpath(dbdir) else
             ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS'))
    ibs = wbia.opendb(dbdir=dbdir, allow_newdir=False)

    import datetime

    day1 = datetime.date(2016, 1, 30)
    day2 = datetime.date(2016, 1, 31)

    orig_filter_kw = {
        'multiple': None,
        # 'view': ['right'],
        # 'minqual': 'good',
        'is_known': True,
        'min_pername': 2,
    }
    orig_aids = ibs.filter_annots_general(filter_kw=ut.dict_union(
        orig_filter_kw,
        {
            'min_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day1, 0.0)),
            'max_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day2, 1.0)),
        },
    ))
    orig_all_annots = ibs.annots(orig_aids)
    orig_unique_nids, orig_grouped_annots_ = orig_all_annots.group(
        orig_all_annots.nids)
    # Ensure we get everything
    orig_grouped_annots = [
        ibs.annots(aids_) for aids_ in ibs.get_name_aids(orig_unique_nids)
    ]

    # pip install quantumrandom
    if False:
        import quantumrandom

        data = quantumrandom.uint16()
        seed = data.sum()
        print('seed = %r' % (seed, ))
        # import Crypto.Random
        # from Crypto import Random
        # quantumrandom.get_data()
        # StrongRandom = Crypto.Random.random.StrongRandom
        # aes.reseed(3340258)
        # chars = [str(chr(x)) for x in data.view(np.uint8)]
        # aes_seed = str('').join(chars)
        # aes = Crypto.Random.Fortuna.FortunaGenerator.AESGenerator()
        # aes.reseed(aes_seed)
        # aes.pseudo_random_data(10)

    orig_rand_idxs = ut.random_indexes(len(orig_grouped_annots), seed=3340258)
    orig_sample_size = 75
    random_annot_groups = ut.take(orig_grouped_annots, orig_rand_idxs)
    orig_annot_sample = random_annot_groups[:orig_sample_size]

    # OOOPS MADE ERROR REDO ----

    filter_kw = {
        'multiple': None,
        'view': ['right'],
        'minqual': 'good',
        'is_known': True,
        'min_pername': 2,
    }
    filter_kw_ = ut.dict_union(
        filter_kw,
        {
            'min_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day1, 0.0)),
            'max_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day2, 1.0)),
        },
    )
    refiltered_sample = [
        ibs.filter_annots_general(annot.aids, filter_kw=filter_kw_)
        for annot in orig_annot_sample
    ]
    is_ok = np.array(ut.lmap(len, refiltered_sample)) >= 2
    ok_part_orig_sample = ut.compress(orig_annot_sample, is_ok)
    ok_part_orig_nids = [x.nids[0] for x in ok_part_orig_sample]

    # Now compute real sample
    aids = ibs.filter_annots_general(filter_kw=filter_kw_)
    all_annots = ibs.annots(aids)
    unique_nids, grouped_annots_ = all_annots.group(all_annots.nids)
    grouped_annots = grouped_annots_
    # Ensure we get everything
    # grouped_annots = [ibs.annots(aids_) for aids_ in ibs.get_name_aids(unique_nids)]

    pop = len(grouped_annots)
    pername_list = ut.lmap(len, grouped_annots)
    groups = wbia.annots.AnnotGroups(grouped_annots, ibs)
    match_tags = [ut.unique(ut.flatten(t)) for t in groups.match_tags]
    tag_case_hist = ut.dict_hist(ut.flatten(match_tags))
    print('name_pop = %r' % (pop, ))
    print('Annots per Multiton Name' +
          ut.repr3(ut.get_stats(pername_list, use_median=True)))
    print('Name Tag Hist ' + ut.repr3(tag_case_hist))
    print('Percent Photobomb: %.2f%%' %
          (tag_case_hist['photobomb'] / pop * 100))
    print('Percent Split: %.2f%%' % (tag_case_hist['splitcase'] / pop * 100))

    # Remove the ok part from this sample
    remain_unique_nids = ut.setdiff(unique_nids, ok_part_orig_nids)
    remain_grouped_annots = [
        ibs.annots(aids_) for aids_ in ibs.get_name_aids(remain_unique_nids)
    ]

    sample_size = 75
    import vtool as vt

    vt.calc_sample_from_error_bars(0.05, pop, conf_level=0.95, prior=0.05)

    remain_rand_idxs = ut.random_indexes(len(remain_grouped_annots),
                                         seed=3340258)
    remain_sample_size = sample_size - len(ok_part_orig_nids)
    remain_random_annot_groups = ut.take(remain_grouped_annots,
                                         remain_rand_idxs)
    remain_annot_sample = remain_random_annot_groups[:remain_sample_size]

    annot_sample_nofilter = ok_part_orig_sample + remain_annot_sample
    # Filter out all bad parts
    annot_sample_filter = [
        ibs.annots(ibs.filter_annots_general(annot.aids, filter_kw=filter_kw_))
        for annot in annot_sample_nofilter
    ]
    annot_sample = annot_sample_filter

    win = None
    from wbia.viz import viz_graph2

    for annots in ut.InteractiveIter(annot_sample):
        if win is not None:
            win.close()
        win = viz_graph2.make_qt_graph_interface(ibs,
                                                 aids=annots.aids,
                                                 init_mode='rereview')
        print(win)

    sample_groups = wbia.annots.AnnotGroups(annot_sample, ibs)

    flat_tags = [ut.unique(ut.flatten(t)) for t in sample_groups.match_tags]

    print('Using Split and Photobomb')
    is_positive = ['photobomb' in t or 'splitcase' in t for t in flat_tags]
    num_positive = sum(is_positive)
    vt.calc_error_bars_from_sample(sample_size,
                                   num_positive,
                                   pop,
                                   conf_level=0.95)

    print('Only Photobomb')
    is_positive = ['photobomb' in t for t in flat_tags]
    num_positive = sum(is_positive)
    vt.calc_error_bars_from_sample(sample_size,
                                   num_positive,
                                   pop,
                                   conf_level=0.95)

    print('Only SplitCase')
    is_positive = ['splitcase' in t for t in flat_tags]
    num_positive = sum(is_positive)
    vt.calc_error_bars_from_sample(sample_size,
                                   num_positive,
                                   pop,
                                   conf_level=0.95)
Esempio n. 2
0
def split_analysis(ibs):
    """
    CommandLine:
        python -m ibeis.other.dbinfo split_analysis --show
        python -m ibeis split_analysis --show
        python -m ibeis split_analysis --show --good

    Ignore:
        # mount
        sshfs -o idmap=user lev:/ ~/lev

        # unmount
        fusermount -u ~/lev

    Example:
        >>> # DISABLE_DOCTEST GGR
        >>> from ibeis.other.dbinfo import *  # NOQA
        >>> import ibeis
        >>> dbdir = '/media/danger/GGR/GGR-IBEIS'
        >>> dbdir = dbdir if ut.checkpath(dbdir) else ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS')
        >>> ibs = ibeis.opendb(dbdir=dbdir, allow_newdir=False)
        >>> import guitool_ibeis as gt
        >>> gt.ensure_qtapp()
        >>> win = split_analysis(ibs)
        >>> ut.quit_if_noshow()
        >>> import plottool_ibeis as pt
        >>> gt.qtapp_loop(qwin=win)
        >>> #ut.show_if_requested()
    """
    #nid_list = ibs.get_valid_nids(filter_empty=True)
    import datetime
    day1 = datetime.date(2016, 1, 30)
    day2 = datetime.date(2016, 1, 31)

    filter_kw = {
        'multiple': None,
        #'view': ['right'],
        #'minqual': 'good',
        'is_known': True,
        'min_pername': 1,
    }
    aids1 = ibs.filter_annots_general(filter_kw=ut.dict_union(
        filter_kw, {
            'min_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day1, 0.0)),
            'max_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day1, 1.0)),
        })
    )
    aids2 = ibs.filter_annots_general(filter_kw=ut.dict_union(
        filter_kw, {
            'min_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day2, 0.0)),
            'max_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day2, 1.0)),
        })
    )
    all_aids = aids1 + aids2
    all_annots = ibs.annots(all_aids)
    print('%d annots on day 1' % (len(aids1)) )
    print('%d annots on day 2' % (len(aids2)) )
    print('%d annots overall' % (len(all_annots)) )
    print('%d names overall' % (len(ut.unique(all_annots.nids))) )

    nid_list, annots_list = all_annots.group(all_annots.nids)

    REVIEWED_EDGES = True
    if REVIEWED_EDGES:
        aids_list = [annots.aids for annots in annots_list]
        #aid_pairs = [annots.get_am_aidpairs() for annots in annots_list]  # Slower
        aid_pairs = ibs.get_unflat_am_aidpairs(aids_list)  # Faster
    else:
        # ALL EDGES
        aid_pairs = [annots.get_aidpairs() for annots in annots_list]

    speeds_list = ibs.unflat_map(ibs.get_annotpair_speeds, aid_pairs)
    import vtool_ibeis as vt
    max_speeds = np.array([vt.safe_max(s, nans=False) for s in speeds_list])

    nan_idx = np.where(np.isnan(max_speeds))[0]
    inf_idx = np.where(np.isinf(max_speeds))[0]
    bad_idx = sorted(ut.unique(ut.flatten([inf_idx, nan_idx])))
    ok_idx = ut.index_complement(bad_idx, len(max_speeds))

    print('#nan_idx = %r' % (len(nan_idx),))
    print('#inf_idx = %r' % (len(inf_idx),))
    print('#ok_idx = %r' % (len(ok_idx),))

    ok_speeds = max_speeds[ok_idx]
    ok_nids = ut.take(nid_list, ok_idx)
    ok_annots = ut.take(annots_list, ok_idx)
    sortx = np.argsort(ok_speeds)[::-1]

    sorted_speeds = np.array(ut.take(ok_speeds, sortx))
    sorted_annots = np.array(ut.take(ok_annots, sortx))
    sorted_nids = np.array(ut.take(ok_nids, sortx))  # NOQA

    sorted_speeds = np.clip(sorted_speeds, 0, 100)

    #idx = vt.find_elbow_point(sorted_speeds)
    #EXCESSIVE_SPEED = sorted_speeds[idx]
    # http://www.infoplease.com/ipa/A0004737.html
    # http://www.speedofanimals.com/animals/zebra
    #ZEBRA_SPEED_MAX  = 64  # km/h
    #ZEBRA_SPEED_RUN  = 50  # km/h
    ZEBRA_SPEED_SLOW_RUN  = 20  # km/h
    #ZEBRA_SPEED_FAST_WALK = 10  # km/h
    #ZEBRA_SPEED_WALK = 7  # km/h

    MAX_SPEED = ZEBRA_SPEED_SLOW_RUN
    #MAX_SPEED = ZEBRA_SPEED_WALK
    #MAX_SPEED = EXCESSIVE_SPEED

    flags = sorted_speeds > MAX_SPEED
    flagged_ok_annots = ut.compress(sorted_annots, flags)
    inf_annots = ut.take(annots_list, inf_idx)
    flagged_annots = inf_annots + flagged_ok_annots

    print('MAX_SPEED = %r km/h' % (MAX_SPEED,))
    print('%d annots with infinite speed' % (len(inf_annots),))
    print('%d annots with large speed' % (len(flagged_ok_annots),))
    print('Marking all pairs of annots above the threshold as non-matching')

    from ibeis.algo.graph import graph_iden
    import networkx as nx
    progkw = dict(freq=1, bs=True, est_window=len(flagged_annots))

    bad_edges_list = []
    good_edges_list = []
    for annots in ut.ProgIter(flagged_annots, lbl='flag speeding names', **progkw):
        edge_to_speeds = annots.get_speeds()
        bad_edges = [edge for edge, speed in edge_to_speeds.items() if speed > MAX_SPEED]
        good_edges = [edge for edge, speed in edge_to_speeds.items() if speed <= MAX_SPEED]
        bad_edges_list.append(bad_edges)
        good_edges_list.append(good_edges)
    all_bad_edges = ut.flatten(bad_edges_list)
    good_edges_list = ut.flatten(good_edges_list)
    print('num_bad_edges = %r' % (len(ut.flatten(bad_edges_list)),))
    print('num_bad_edges = %r' % (len(ut.flatten(good_edges_list)),))

    if 1:
        from ibeis.viz import viz_graph2
        import guitool_ibeis as gt
        gt.ensure_qtapp()

        if ut.get_argflag('--good'):
            print('Looking at GOOD (no speed problems) edges')
            aid_pairs = good_edges_list
        else:
            print('Looking at BAD (speed problems) edges')
            aid_pairs = all_bad_edges
        aids = sorted(list(set(ut.flatten(aid_pairs))))
        infr = graph_iden.AnnotInference(ibs, aids, verbose=False)
        infr.initialize_graph()

        # Use random scores to randomize sort order
        rng = np.random.RandomState(0)
        scores = (-rng.rand(len(aid_pairs)) * 10).tolist()
        infr.graph.add_edges_from(aid_pairs)

        if True:
            edge_sample_size = 250
            pop_nids = ut.unique(ibs.get_annot_nids(ut.unique(ut.flatten(aid_pairs))))
            sorted_pairs = ut.sortedby(aid_pairs, scores)[::-1][0:edge_sample_size]
            sorted_nids = ibs.get_annot_nids(ut.take_column(sorted_pairs, 0))
            sample_size = len(ut.unique(sorted_nids))
            am_rowids = ibs.get_annotmatch_rowid_from_undirected_superkey(*zip(*sorted_pairs))
            flags = ut.not_list(ut.flag_None_items(am_rowids))
            #am_rowids = ut.compress(am_rowids, flags)
            positive_tags = ['SplitCase', 'Photobomb']
            flags_list = [ut.replace_nones(ibs.get_annotmatch_prop(tag, am_rowids), 0)
                          for tag in positive_tags]
            print('edge_case_hist: ' + ut.repr3(
                ['%s %s' % (txt, sum(flags_)) for flags_, txt in zip(flags_list, positive_tags)]))
            is_positive = ut.or_lists(*flags_list)
            num_positive = sum(ut.lmap(any, ut.group_items(is_positive, sorted_nids).values()))
            pop = len(pop_nids)
            print('A positive is any edge flagged as a %s' % (ut.conj_phrase(positive_tags, 'or'),))
            print('--- Sampling wrt edges ---')
            print('edge_sample_size  = %r' % (edge_sample_size,))
            print('edge_population_size = %r' % (len(aid_pairs),))
            print('num_positive_edges = %r' % (sum(is_positive)))
            print('--- Sampling wrt names ---')
            print('name_population_size = %r' % (pop,))
            vt.calc_error_bars_from_sample(sample_size, num_positive, pop, conf_level=.95)

        nx.set_edge_attributes(infr.graph, name='score', values=dict(zip(aid_pairs, scores)))

        win = viz_graph2.AnnotGraphWidget(infr=infr, use_image=False,
                                          init_mode=None)
        win.populate_edge_model()
        win.show()
        return win
        # Make review interface for only bad edges

    infr_list = []
    iter_ = list(zip(flagged_annots, bad_edges_list))
    for annots, bad_edges in ut.ProgIter(iter_, lbl='creating inference', **progkw):
        aids = annots.aids
        nids = [1] * len(aids)
        infr = graph_iden.AnnotInference(ibs, aids, nids, verbose=False)
        infr.initialize_graph()
        infr.reset_feedback()
        infr_list.append(infr)

    # Check which ones are user defined as incorrect
    #num_positive = 0
    #for infr in infr_list:
    #    flag = np.any(infr.get_feedback_probs()[0] == 0)
    #    num_positive += flag
    #print('num_positive = %r' % (num_positive,))
    #pop = len(infr_list)
    #print('pop = %r' % (pop,))

    iter_ = list(zip(infr_list, bad_edges_list))
    for infr, bad_edges in ut.ProgIter(iter_, lbl='adding speed edges', **progkw):
        flipped_edges = []
        for aid1, aid2 in bad_edges:
            if infr.graph.has_edge(aid1, aid2):
                flipped_edges.append((aid1, aid2))
            infr.add_feedback((aid1, aid2), NEGTV)
        nx.set_edge_attributes(infr.graph, name='_speed_split', values='orig')
        nx.set_edge_attributes(infr.graph, name='_speed_split', values={edge: 'new' for edge in bad_edges})
        nx.set_edge_attributes(infr.graph, name='_speed_split', values={edge: 'flip' for edge in flipped_edges})

    #for infr in ut.ProgIter(infr_list, lbl='flagging speeding edges', **progkw):
    #    annots = ibs.annots(infr.aids)
    #    edge_to_speeds = annots.get_speeds()
    #    bad_edges = [edge for edge, speed in edge_to_speeds.items() if speed > MAX_SPEED]

    def inference_stats(infr_list_):
        relabel_stats = []
        for infr in infr_list_:
            num_ccs, num_inconsistent = infr.relabel_using_reviews()
            state_hist = ut.dict_hist(nx.get_edge_attributes(infr.graph, 'decision').values())
            if POSTV not in state_hist:
                state_hist[POSTV] = 0
            hist = ut.dict_hist(nx.get_edge_attributes(infr.graph, '_speed_split').values())

            subgraphs = infr.positive_connected_compoments()
            subgraph_sizes = [len(g) for g in subgraphs]

            info = ut.odict([
                ('num_nonmatch_edges', state_hist[NEGTV]),
                ('num_match_edges', state_hist[POSTV]),
                ('frac_nonmatch_edges',  state_hist[NEGTV] / (state_hist[POSTV] + state_hist[NEGTV])),
                ('num_inconsistent', num_inconsistent),
                ('num_ccs', num_ccs),
                ('edges_flipped', hist.get('flip', 0)),
                ('edges_unchanged', hist.get('orig', 0)),
                ('bad_unreviewed_edges', hist.get('new', 0)),
                ('orig_size', len(infr.graph)),
                ('new_sizes', subgraph_sizes),
            ])
            relabel_stats.append(info)
        return relabel_stats

    relabel_stats = inference_stats(infr_list)

    print('\nAll Split Info:')
    lines = []
    for key in relabel_stats[0].keys():
        data = ut.take_column(relabel_stats, key)
        if key == 'new_sizes':
            data = ut.flatten(data)
        lines.append('stats(%s) = %s' % (key, ut.repr2(ut.get_stats(data, use_median=True), precision=2)))
    print('\n'.join(ut.align_lines(lines, '=')))

    num_incon_list = np.array(ut.take_column(relabel_stats, 'num_inconsistent'))
    can_split_flags = num_incon_list == 0
    print('Can trivially split %d / %d' % (sum(can_split_flags), len(can_split_flags)))

    splittable_infrs = ut.compress(infr_list, can_split_flags)

    relabel_stats = inference_stats(splittable_infrs)

    print('\nTrival Split Info:')
    lines = []
    for key in relabel_stats[0].keys():
        if key in ['num_inconsistent']:
            continue
        data = ut.take_column(relabel_stats, key)
        if key == 'new_sizes':
            data = ut.flatten(data)
        lines.append('stats(%s) = %s' % (
            key, ut.repr2(ut.get_stats(data, use_median=True), precision=2)))
    print('\n'.join(ut.align_lines(lines, '=')))

    num_match_edges = np.array(ut.take_column(relabel_stats, 'num_match_edges'))
    num_nonmatch_edges = np.array(ut.take_column(relabel_stats, 'num_nonmatch_edges'))
    flags1 = np.logical_and(num_match_edges > num_nonmatch_edges, num_nonmatch_edges < 3)
    reasonable_infr = ut.compress(splittable_infrs, flags1)

    new_sizes_list = ut.take_column(relabel_stats, 'new_sizes')
    flags2 = [len(sizes) == 2 and sum(sizes) > 4 and (min(sizes) / max(sizes)) > .3
              for sizes in new_sizes_list]
    reasonable_infr = ut.compress(splittable_infrs, flags2)
    print('#reasonable_infr = %r' % (len(reasonable_infr),))

    for infr in ut.InteractiveIter(reasonable_infr):
        annots = ibs.annots(infr.aids)
        edge_to_speeds = annots.get_speeds()
        print('max_speed = %r' % (max(edge_to_speeds.values())),)
        infr.initialize_visual_node_attrs()
        infr.show_graph(use_image=True, only_reviewed=True)

    rest = ~np.logical_or(flags1, flags2)
    nonreasonable_infr = ut.compress(splittable_infrs, rest)
    rng = np.random.RandomState(0)
    random_idx = ut.random_indexes(len(nonreasonable_infr) - 1, 15, rng=rng)
    random_infr = ut.take(nonreasonable_infr, random_idx)
    for infr in ut.InteractiveIter(random_infr):
        annots = ibs.annots(infr.aids)
        edge_to_speeds = annots.get_speeds()
        print('max_speed = %r' % (max(edge_to_speeds.values())),)
        infr.initialize_visual_node_attrs()
        infr.show_graph(use_image=True, only_reviewed=True)

    #import scipy.stats as st
    #conf_interval = .95
    #st.norm.cdf(conf_interval)
    # view-source:http://www.surveysystem.com/sscalc.htm
    #zval = 1.96  # 95 percent confidence
    #zValC = 3.8416  #
    #zValC = 6.6564

    #import statsmodels.stats.api as sms
    #es = sms.proportion_effectsize(0.5, 0.75)
    #sms.NormalIndPower().solve_power(es, power=0.9, alpha=0.05, ratio=1)

    pop = 279
    num_positive = 3
    sample_size = 15
    conf_level = .95
    #conf_level = .99
    vt.calc_error_bars_from_sample(sample_size, num_positive, pop, conf_level)
    print('---')
    vt.calc_error_bars_from_sample(sample_size + 38, num_positive, pop, conf_level)
    print('---')
    vt.calc_error_bars_from_sample(sample_size + 38 / 3, num_positive, pop, conf_level)
    print('---')

    vt.calc_error_bars_from_sample(15 + 38, num_positive=3, pop=675, conf_level=.95)
    vt.calc_error_bars_from_sample(15, num_positive=3, pop=675, conf_level=.95)

    pop = 279
    #err_frac = .05  # 5%
    err_frac = .10  # 10%
    conf_level = .95
    vt.calc_sample_from_error_bars(err_frac, pop, conf_level)

    pop = 675
    vt.calc_sample_from_error_bars(err_frac, pop, conf_level)
    vt.calc_sample_from_error_bars(.05, pop, conf_level=.95, prior=.1)
    vt.calc_sample_from_error_bars(.05, pop, conf_level=.68, prior=.2)
    vt.calc_sample_from_error_bars(.10, pop, conf_level=.68)

    vt.calc_error_bars_from_sample(100, num_positive=5, pop=675, conf_level=.95)
    vt.calc_error_bars_from_sample(100, num_positive=5, pop=675, conf_level=.68)
Esempio n. 3
0
def test_scoremech():
    import utool as ut
    import wbia
    from wbia.algo.hots import _pipeline_helpers as plh  # NOQA

    base = {'query_rotation_heuristic': False, 'sv_on': False}
    base = {'query_rotation_heuristic': True, 'sv_on': False, 'K': 1}
    base = {'query_rotation_heuristic': True, 'sv_on': False, 'K': 1}
    cfgdict1 = ut.dict_union(base, {
        'score_method': 'nsum',
        'prescore_method': 'nsum'
    })
    cfgdict2 = ut.dict_union(base, {
        'score_method': 'csum',
        'prescore_method': 'csum'
    })

    qaids = [13]
    daids = [
        1,
        5,
        11,
        19,
        22,
        27,
        31,
        36,
        39,
        42,
        43,
        46,
        50,
        53,
        55,
        58,
        64,
        68,
        73,
        79,
        81,
        84,
        85,
        89,
        95,
        98,
        99,
        105,
        108,
        111,
        114,
        119,
    ]

    ibs = wbia.opendb('PZ_MTEST')
    qreq1_ = ibs.new_query_request(qaids, daids, cfgdict=cfgdict1)
    qreq2_ = ibs.new_query_request(qaids, daids, cfgdict=cfgdict2)
    cm_list1 = qreq1_.execute()
    cm_list2 = qreq2_.execute()

    cm1, cm2 = cm_list1[0], cm_list2[0]

    ai1 = cm1.pandas_annot_info().set_index(['daid', 'dnid'], drop=True)
    ai2 = cm2.pandas_annot_info().set_index(['daid', 'dnid'], drop=True)
    ai1 = ai1.rename(columns={c: c + '1' for c in ai2.columns})
    ai2 = ai2.rename(columns={c: c + '2' for c in ai2.columns})
    # logger.info(ai1.join(ai2))

    ni1 = cm1.pandas_name_info().set_index(['dnid'], drop=True)
    ni2 = cm2.pandas_name_info().set_index(['dnid'], drop=True)
    ni1 = ni1.rename(columns={c: c + '1' for c in ni2.columns})
    ni2 = ni2.rename(columns={c: c + '2' for c in ni2.columns})
    logger.info(ni1.join(ni2))

    cm1 == cm2

    from wbia.algo.hots.chip_match import check_arrs_eq

    cm1.score_list == cm2.score_list
    cm1.name_score_list == cm2.name_score_list
    cm2.annot_score_list == cm2.annot_score_list
    assert check_arrs_eq(cm1.fm_list, cm2.fm_list)
    assert check_arrs_eq(cm1.fsv_list, cm2.fsv_list)

    # assert np.all(cm1.daid_list == cm2.daid_list)

    cm1.score_list
    cm2.score_list

    cm, qreq_ = cm1, qreq1_
    cm.evaluate_nsum_name_score(qreq_)
    cm.evaluate_maxcsum_name_score(qreq_)
    # fmech = cm.algo_name_scores['nsum']
    # amech = cm.algo_name_scores['maxcsum']
    if qreq_.qparams.K == 1 and qreq_.qparams.query_rotation_heuristic is False:
        import numpy as np

        assert np.all(
            cm.algo_name_scores['nsum'] == cm.algo_name_scores['maxcsum'])

    from wbia.algo.hots import name_scoring

    # name_scoring.compute_fmech_score(cm, qreq_=qreq_, hack_single_ori=False)
    name_scoring.compute_fmech_score(cm, qreq_=qreq_)