Esempio n. 1
0
    def test_equivalent_access(self, make_cls):
        Cls = make_cls(foo=uttr.ib(unit=u.kg), arr_=uttr.array_accessor())
        instance = Cls(foo=1 * u.g)

        assert instance.foo == 1 * u.g
        assert instance.arr_.foo == 0.001
        assert instance.arr_["foo"] == 0.001
Esempio n. 2
0
    def test_dimensionless_access(self, make_cls):
        Cls = make_cls(foo=uttr.ib(unit=u.kg), arr_=uttr.array_accessor())
        instance = Cls(foo=1)

        assert instance.foo == 1 * u.kg
        assert instance.arr_.foo == 1
        assert instance.arr_["foo"] == 1
Esempio n. 3
0
    class ArrAtLast:
        x = uttr.ib(unit=u.kpc)
        y = uttr.ib(unit=u.kpc)

        z = uttr.ib(init=False, unit=u.kpc)
        arr_ = uttr.array_accessor()

        @z.default
        def _z_default(self):
            return self.arr_.x * self.arr_.y
Esempio n. 4
0
    def test_no_uttr_quantity(self, make_cls):
        Cls = make_cls(foo=attr.ib(), arr_=uttr.array_accessor())
        instance = Cls(foo=1 * u.kg)

        assert instance.foo == 1 * u.kg

        with pytest.raises(AttributeError):
            instance.arr_.foo
        with pytest.raises(KeyError):
            instance.arr_["foo"]
Esempio n. 5
0
    class Foo:
        x = uttr.ib(unit=u.kpc)
        y = uttr.ib(unit=u.kpc)
        z = attr.ib()

        arr_ = uttr.array_accessor()
Esempio n. 6
0
 class Foo:
     a = uttr.ib(default=None, unit=u.Msun)
     arr_ = uttr.array_accessor()
Esempio n. 7
0
    def test_same_unit_access(self, make_cls):
        Cls = make_cls(foo=uttr.ib(unit=u.kg), arr_=uttr.array_accessor())
        instance = Cls(foo=1 * u.kg)

        assert instance.foo == 1 * u.kg
        assert instance.arr_["foo"] == 1
Esempio n. 8
0
class Galaxy:
    """
    Galaxy class.

    Builds a galaxy object from masses, positions, and
    velocities of particles (stars, dark matter and gas).

    Parameters
    ----------
    m_s : `Quantity`
        Star masses. Shape: (n_s,1). Default unit: M_sun
    x_s, y_s, z_s : `Quantity`
        Star positions. Shape: (n_s,1). Default unit: kpc.
    vx_s, vy_s, vz_s : `Quantity`
        Star velocities. Shape: (n_s,1). Default unit: km/s.
    m_dm : `Quantity`
        Dark matter masses. Shape: (n_dm,1). Default unit: M_sun
    x_dm, y_dm, z_dm :  `Quantity`
        Dark matter positions. Shape: (n_dm,1). Default unit: kpc.
    vx_dm, vy_dm, vz_dm : `Quantity`
        Dark matter velocities. Shape: (n_dm,1). Default unit: km/s.
    m_g : `Quantity`
        Gas masses. Shape: (n_g,1). Default unit: M_sun
    x_g, y_g, z_g :  `Quantity`
        Gas positions. Shape: (n_g,1). Default unit: kpc.
    vx_g, vy_g, vz_g : `Quantity`
        Gas velocities. Shape: (n_g,1). Default unit: km/s.
    pot_s : `Quantity`, default value = 0
        Specific potential energy of star particles.
        Shape: (n_s,1). Default unit: (km/s)**2.
    pot_dm : `Quantity`, default value = 0
        Specific potential energy of dark matter particles.
        Shape: (n_dm,1). Default unit: (km/s)**2.
    pot_g : `Quantity`, default value = 0
        Specific potential energy of gas particles.
        Shape: (n_g,1). Default unit: (km/s)**2.
    eps_s : `Quantity`, default value = 0
        Softening radius of star particles. Shape: (1,). Default unit: kpc.
    eps_dm : `Quantity`, default value = 0
        Softening radius of dark matter particles.
        Shape: (1,). Default unit: kpc.
    eps_g : `Quantity`, default value = 0
        Softening radius of gas particles. Shape: (1,). Default unit: kpc.
    J_part : `Quantity`
        Total specific angular momentum of all particles (stars, dark matter
        and gas).
        Shape: (n,3). Default units: kpc*km/s
    J_star : `Quantity`
        Total specific angular momentum of stars.
        Shape: (n_s,1). Default unit: kpc*km/s
    Jr_part : `Quantity`
        Projection of the total specific angular momentum in the xy plane for
        all particles.
        Shape: (n,1). Default unit: kpc*km/s
    Jr_star : `Quantity`
        Projection of the specific angular momentum of stars in the xy plane.
        Shape: (n_s,1). Default unit: kpc*km/s
    x : `Quantity`
        Normalized specific energy for the particle with the maximum
        z-component of the normalized specific angular momentum per bin.
        Default unit: dimensionless
    y : `Quantity`
        Maximum value of the z-component of the normalized specific angular
        momentum per bin.
        Default units: dimensionless

    Attributes
    ----------
    arr_: `uttr.ArrayAccessor`
        Original array accessor object create by the *uttr* library.
        Array accesor: it converts uttr attributes to the default unit and
        afterward to a `numpy.ndarray`.
        For more information see: https://pypi.org/project/uttrs/
    """

    m_s = uttr.ib(unit=u.Msun)
    x_s = uttr.ib(unit=u.kpc)
    y_s = uttr.ib(unit=u.kpc)
    z_s = uttr.ib(unit=u.kpc)
    vx_s = uttr.ib(unit=(u.km / u.s))
    vy_s = uttr.ib(unit=(u.km / u.s))
    vz_s = uttr.ib(unit=(u.km / u.s))

    m_dm = uttr.ib(unit=u.Msun)
    x_dm = uttr.ib(unit=u.kpc)
    y_dm = uttr.ib(unit=u.kpc)
    z_dm = uttr.ib(unit=u.kpc)
    vx_dm = uttr.ib(unit=(u.km / u.s))
    vy_dm = uttr.ib(unit=(u.km / u.s))
    vz_dm = uttr.ib(unit=(u.km / u.s))

    m_g = uttr.ib(unit=u.Msun)
    x_g = uttr.ib(unit=u.kpc)
    y_g = uttr.ib(unit=u.kpc)
    z_g = uttr.ib(unit=u.kpc)
    vx_g = uttr.ib(unit=(u.km / u.s))
    vy_g = uttr.ib(unit=(u.km / u.s))
    vz_g = uttr.ib(unit=(u.km / u.s))

    pot_s = uttr.ib(default=np.zeros(1), unit=(u.km / u.s) ** 2)
    pot_dm = uttr.ib(default=np.zeros(1), unit=(u.km / u.s) ** 2)
    pot_g = uttr.ib(default=np.zeros(1), unit=(u.km / u.s) ** 2)

    eps_s = uttr.ib(default=0.0, unit=u.kpc)
    eps_dm = uttr.ib(default=0.0, unit=u.kpc)
    eps_g = uttr.ib(default=0.0, unit=u.kpc)

    J_part = uttr.ib(default=None, unit=(u.kpc * u.km / u.s))
    J_star = uttr.ib(default=None, unit=(u.kpc * u.km / u.s))
    Jr_part = uttr.ib(default=None, unit=(u.kpc * u.km / u.s))
    Jr_star = uttr.ib(default=None, unit=(u.kpc * u.km / u.s))

    x = uttr.ib(default=None, unit=u.dimensionless_unscaled)
    y = uttr.ib(default=None, unit=u.dimensionless_unscaled)

    arr_ = uttr.array_accessor()

    # components_s = attr.ib(default=None)
    # components_g = attr.ib(default=None)
    # metadata = attr.ib(default=None)

    def __attrs_post_init__(self):
        """
        Validate attrs with units.

        Units length validator.

        This method determines that the length of the different particles
        families are the same.

        Potential energy input validator.

        This method determines the validation of input of the specific
        potential energy.

        """
        if np.all(self.arr_.pot_s) != 0.0:
            length_s = np.array(
                [
                    len(self.arr_.x_s),
                    len(self.arr_.y_s),
                    len(self.arr_.z_s),
                    len(self.arr_.vx_s),
                    len(self.arr_.vy_s),
                    len(self.arr_.vz_s),
                    len(self.arr_.pot_s),
                ]
            )
        else:
            length_s = np.array(
                [
                    len(self.arr_.x_s),
                    len(self.arr_.y_s),
                    len(self.arr_.z_s),
                    len(self.arr_.vx_s),
                    len(self.arr_.vy_s),
                    len(self.arr_.vz_s),
                ]
            )

        if np.any(len(self.arr_.m_s) != length_s):
            raise ValueError("Stars inputs must have the same length")

        if np.all(self.arr_.pot_dm) != 0.0:
            length_dm = np.array(
                [
                    len(self.arr_.x_dm),
                    len(self.arr_.y_dm),
                    len(self.arr_.z_dm),
                    len(self.arr_.vx_dm),
                    len(self.arr_.vy_dm),
                    len(self.arr_.vz_dm),
                    len(self.arr_.pot_dm),
                ]
            )
        else:
            length_dm = np.array(
                [
                    len(self.arr_.x_dm),
                    len(self.arr_.y_dm),
                    len(self.arr_.z_dm),
                    len(self.arr_.vx_dm),
                    len(self.arr_.vy_dm),
                    len(self.arr_.vz_dm),
                ]
            )

        if np.any(len(self.arr_.m_dm) != length_dm):
            raise ValueError("Dark matter inputs must have the same length")

        if np.all(self.arr_.pot_g) != 0.0:
            length_g = np.array(
                [
                    len(self.arr_.x_g),
                    len(self.arr_.y_g),
                    len(self.arr_.z_g),
                    len(self.arr_.vx_g),
                    len(self.arr_.vy_g),
                    len(self.arr_.vz_g),
                    len(self.arr_.pot_g),
                ]
            )
        else:
            length_g = np.array(
                [
                    len(self.arr_.x_g),
                    len(self.arr_.y_g),
                    len(self.arr_.z_g),
                    len(self.arr_.vx_g),
                    len(self.arr_.vy_g),
                    len(self.arr_.vz_g),
                ]
            )

        if np.any(len(self.arr_.m_g) != length_g):
            raise ValueError("Gas inputs must have the same length")

        # Potential energy input validator.
        if np.any(self.arr_.pot_s != 0.0) and (
            np.all(self.arr_.pot_dm == 0.0) or np.all(self.arr_.pot_g == 0.0)
        ):
            raise ValueError(
                "Potential energy must be instanced for all type particles"
            )

        if np.any(self.arr_.pot_dm != 0.0) and (
            np.all(self.arr_.pot_s == 0.0) or np.all(self.arr_.pot_g == 0.0)
        ):
            raise ValueError(
                "Potential energy must be instanced for all type particles"
            )

        if np.any(self.arr_.pot_g != 0.0) and (
            np.all(self.arr_.pot_s == 0.0) or np.all(self.arr_.pot_dm == 0.0)
        ):
            raise ValueError(
                "Potential energy must be instanced for all type particles"
            )

    @property
    def kinetic_energy(self):
        """
        Specific kinetic energy calculation.

        Calculates the specific kinetic energy
        of stars, dark matter and gas particles.

        Returns
        -------
        tuple : `Quantity`
            (k_s, k_dm, k_g): Specific kinetic energy of stars, dark matter and
            gas respectively. Shape(n_s, n_dm, n_g). Unit: (km/s)**2

        Examples
        --------
        This returns the specific kinetic energy of stars, dark matter and gas
        particles respectively.

        >>> import galaxychop as gc
        >>> galaxy = gc.Galaxy(...)
        >>> k_s, k_dm, k_g = galaxy.kinetic_energy
        """
        vx_s = self.arr_.vx_s
        vy_s = self.arr_.vy_s
        vz_s = self.arr_.vz_s

        vx_dm = self.arr_.vx_dm
        vy_dm = self.arr_.vy_dm
        vz_dm = self.arr_.vz_dm

        vx_g = self.arr_.vx_g
        vy_g = self.arr_.vy_g
        vz_g = self.arr_.vz_g

        k_s = 0.5 * (vx_s ** 2 + vy_s ** 2 + vz_s ** 2)
        k_dm = 0.5 * (vx_dm ** 2 + vy_dm ** 2 + vz_dm ** 2)
        k_g = 0.5 * (vx_g ** 2 + vy_g ** 2 + vz_g ** 2)

        k_s = k_s * (u.km / u.s) ** 2
        k_dm = k_dm * (u.km / u.s) ** 2
        k_g = k_g * (u.km / u.s) ** 2

        return (k_s, k_dm, k_g)

    def potential_energy(self):
        """
        Specific potential energy calculation.

        Calculates the specific potencial energy
        of dark matter, star and gas particles.

        Returns
        -------
        gx : `galaxy object`
            New instanced galaxy specific potencial energy calculated for
            stars, dark matter and gas particles.

        Examples
        --------
        This returns the specific potential energy of stars, dark matter and
        gas particles.

        >>> import galaxychop as gc
        >>> galaxy = gc.Galaxy(...)
        >>> gpot = galaxy.potential_energy()
        >>> pot_s, pot_dm, pot_g = gpot.pot_s, gpot.pot_dm, gpot.pot_g

        Note
        ----
        If the potentials are entered when the `galaxy` object is instanced,
        then, the calculation of `potential_energy` will raise a `ValueError`.
        """
        m_s = self.arr_.m_s
        x_s = self.arr_.x_s
        y_s = self.arr_.y_s
        z_s = self.arr_.z_s

        m_dm = self.arr_.m_dm
        x_dm = self.arr_.x_dm
        y_dm = self.arr_.y_dm
        z_dm = self.arr_.z_dm

        m_g = self.arr_.m_g
        x_g = self.arr_.x_g
        y_g = self.arr_.y_g
        z_g = self.arr_.z_g

        pot_s = self.arr_.pot_s
        pot_dm = self.arr_.pot_dm
        pot_g = self.arr_.pot_g

        pot_s = self.arr_.pot_s
        pot_dm = self.arr_.pot_dm
        pot_g = self.arr_.pot_g

        eps_s = self.arr_.eps_s
        eps_dm = self.arr_.eps_dm
        eps_g = self.arr_.eps_g

        potential = np.concatenate([pot_s, pot_dm, pot_g])

        if np.all(potential == 0.0):
            x = np.hstack((x_s, x_dm, x_g))
            y = np.hstack((y_s, y_dm, y_g))
            z = np.hstack((z_s, z_dm, z_g))
            m = np.hstack((m_s, m_dm, m_g))
            eps = np.max([eps_s, eps_dm, eps_g])

            pot = utils.potential(
                da.asarray(x, chunks=100),
                da.asarray(y, chunks=100),
                da.asarray(z, chunks=100),
                da.asarray(m, chunks=100),
                da.asarray(eps),
            )

            num_s = len(m_s)
            num = len(m_s) + len(m_dm)

            pot_s = pot[:num_s]
            pot_dm = pot[num_s:num]
            pot_g = pot[num:]

            new = attr.asdict(self, recurse=False)
            del new["arr_"]
            new.update(
                pot_s=-pot_s * (u.km / u.s) ** 2,
                pot_dm=-pot_dm * (u.km / u.s) ** 2,
                pot_g=-pot_g * (u.km / u.s) ** 2,
            )

            return Galaxy(**new)

        else:
            raise ValueError("Potentials are already calculated")

    @property
    def energy(self):
        """
        Specific energy calculation.

        Calculates the specific energy of dark matter, star and gas particles.

        Returns
        -------
        tuple : `Quantity`
            (Etot_s, Etot_dm, Etot_g): Specific total energy of stars, dark
            matter and gas respectively.
            Shape(n_s, n_dm, n_g). Unit: (km/s)**2

        Examples
        --------
        This returns the specific total energy of stars, dark matter and gas
        particles respectively.

        >>> import galaxychop as gc
        >>> galaxy = gc.Galaxy(...)
        >>> E_s, E_dm, E_g = galaxy.energy
        """
        potential = np.concatenate(
            [
                self.arr_.pot_s,
                self.arr_.pot_dm,
                self.arr_.pot_s,
            ]
        )

        k_s = self.kinetic_energy[0].value
        k_dm = self.kinetic_energy[1].value
        k_g = self.kinetic_energy[2].value

        if np.all(potential == 0.0):
            pot_s = self.potential_energy().arr_.pot_s
            pot_dm = self.potential_energy().arr_.pot_dm
            pot_g = self.potential_energy().arr_.pot_g
        else:
            pot_s = self.arr_.pot_s
            pot_dm = self.arr_.pot_dm
            pot_g = self.arr_.pot_g

        Etot_s = (k_s + pot_s) * (u.km / u.s) ** 2
        Etot_dm = (k_dm + pot_dm) * (u.km / u.s) ** 2
        Etot_g = (k_g + pot_g) * (u.km / u.s) ** 2

        return (Etot_s, Etot_dm, Etot_g)

    def angular_momentum(self, r_cut=None):
        """
        Specific angular momentum.

        Centers the particles with respect to the one with the lower specific
        potential, then, calculates the specific angular momentum of
        dark matter, stars and gas particles.

        Parameters
        ----------
        r_cut : `float`, optional
            The default is ``None``; if provided, it must be
            positive and the rotation matrix `A` is calculated
            from the particles with radii smaller than r_cut.

        Returns
        -------
        gx : `galaxy object`
            New instanced galaxy with all particles centered respect to the
            lowest specific energy one and the addition of J_part, J_star,
            Jr_part and Jr_star.

        Examples
        --------
        This returns the specific potential energy of stars, dark matter and
        gas particles.

        >>> import galaxychop as gc
        >>> galaxy = gc.Galaxy(...)
        >>> g_J = galaxy.angular_momentum()
        >>> J_part, J_star= g_J.J_part, g_J.J_star
        >>> Jr_part, Jr_star =  g_J.Jr_part, g_J.Jr_star
        """
        m_s = self.arr_.m_s
        x_s = self.arr_.x_s
        y_s = self.arr_.y_s
        z_s = self.arr_.z_s

        vx_s = self.arr_.vx_s
        vy_s = self.arr_.vy_s
        vz_s = self.arr_.vz_s

        m_dm = self.arr_.m_dm
        x_dm = self.arr_.x_dm
        y_dm = self.arr_.y_dm
        z_dm = self.arr_.z_dm

        vx_dm = self.arr_.vx_dm
        vy_dm = self.arr_.vy_dm
        vz_dm = self.arr_.vz_dm

        m_g = self.arr_.m_g
        x_g = self.arr_.x_g
        y_g = self.arr_.y_g
        z_g = self.arr_.z_g

        vx_g = self.arr_.vx_g
        vy_g = self.arr_.vy_g
        vz_g = self.arr_.vz_g

        pot_s = self.arr_.pot_s
        pot_dm = self.arr_.pot_dm
        pot_g = self.arr_.pot_g

        xs, ys, zs, xdm, ydm, zdm, xg, yg, zg = utils.center(
            m_s,
            x_s,
            y_s,
            z_s,
            m_dm,
            x_dm,
            y_dm,
            z_dm,
            m_g,
            x_g,
            y_g,
            z_g,
            pot_s,
            pot_dm,
            pot_g,
        )

        (
            pos_rot_s_x,
            pos_rot_s_y,
            pos_rot_s_z,
            vel_rot_s_x,
            vel_rot_s_y,
            vel_rot_s_z,
            pos_rot_dm_x,
            pos_rot_dm_y,
            pos_rot_dm_z,
            vel_rot_dm_x,
            vel_rot_dm_y,
            vel_rot_dm_z,
            pos_rot_g_x,
            pos_rot_g_y,
            pos_rot_g_z,
            vel_rot_g_x,
            vel_rot_g_y,
            vel_rot_g_z,
        ) = utils.align(
            m_s,
            xs,
            ys,
            zs,
            vx_s,
            vy_s,
            vz_s,
            xdm,
            ydm,
            zdm,
            vx_dm,
            vy_dm,
            vz_dm,
            xg,
            yg,
            zg,
            vx_g,
            vy_g,
            vz_g,
            r_cut=r_cut,
        )

        J_star = np.array(
            [
                pos_rot_s_y * vel_rot_s_z - pos_rot_s_z * vel_rot_s_y,
                pos_rot_s_z * vel_rot_s_x - pos_rot_s_x * vel_rot_s_z,
                pos_rot_s_x * vel_rot_s_y - pos_rot_s_y * vel_rot_s_x,
            ]
        )

        J_dark = np.array(
            [
                pos_rot_dm_y * vel_rot_dm_z - pos_rot_dm_z * vel_rot_dm_y,
                pos_rot_dm_z * vel_rot_dm_x - pos_rot_dm_x * vel_rot_dm_z,
                pos_rot_dm_x * vel_rot_dm_y - pos_rot_dm_y * vel_rot_dm_x,
            ]
        )

        J_gas = np.array(
            [
                pos_rot_g_y * vel_rot_g_z - pos_rot_g_z * vel_rot_g_y,
                pos_rot_g_z * vel_rot_g_x - pos_rot_g_x * vel_rot_g_z,
                pos_rot_g_x * vel_rot_g_y - pos_rot_g_y * vel_rot_g_x,
            ]
        )

        J_part = np.concatenate([J_gas, J_dark, J_star], axis=1)

        Jr_star = np.sqrt(J_star[0, :] ** 2 + J_star[1, :] ** 2)

        Jr_part = np.sqrt(J_part[0, :] ** 2 + J_part[1, :] ** 2)

        new = attr.asdict(self, recurse=False)
        del new["arr_"]
        new.update(
            J_part=J_part * u.kpc * u.km / u.s,
            J_star=J_star * u.kpc * u.km / u.s,
            Jr_part=Jr_part * u.kpc * u.km / u.s,
            Jr_star=Jr_star * u.kpc * u.km / u.s,
        )

        return Galaxy(**new)

    def jcirc(self, bin0=0.05, bin1=0.005):
        """
        Circular angular momentum.

        Calculation of the points to build the function of the circular
        angular momentum.

        Parameters
        ----------
        bin0 : `float`. Default=0.05
            Size of the specific energy bin of the inner part of the galaxy,
            in the range of (-1, -0.1) of the normalized energy.
        bin1 : `float`. Default=0.005
            Size of the specific energy bin of the outer part of the galaxy,
            in the range of (-0.1, 0) of the normalized energy.

        Returns
        -------
        gx : `galaxy object`
            New instanced galaxy with `x`, being the normalized specific
            energy for the particle with the maximum z-specific angular
            momentum component per the bin, and `y` beign the maximum of
            z-specific angular momentum component.
            See section Notes for more details.

        Notes
        -----
            The `x` and `y` are calculated from the binning in the
            normalized specific energy. In each bin, the particle with the
            maximum value of z-component of standardized specific angular
            momentum is selected. This value is assigned to the `y` parameter
            and its corresponding normalized specific energy pair value to
            `x`.

        Examples
        --------
        This returns the normalized specific energy for the particle with
        the maximum z-component of the normalized specific angular momentum
        per bin (`x`) and the maximum value of the z-component of the
        normalized specific angular momentum per bin (`y`)

        >>> import galaxychop as gc
        >>> galaxy = gc.Galaxy(...)
        >>> g_Jcirc = galaxy.jcirc()
        >>> x, y = g_Jcirc.x, g_Jcirc.y

        """
        Etot_s = self.energy[0].value
        Etot_dm = self.energy[1].value
        Etot_g = self.energy[2].value

        E_tot = np.hstack([Etot_s, Etot_dm, Etot_g])

        # Remove the particles that are not bound: E > 0.
        (neg,) = np.where(E_tot <= 0.0)
        (neg_star,) = np.where(Etot_s <= 0.0)

        # Remove the particles with E = -inf.
        (fin,) = np.where(E_tot[neg] != -np.inf)
        (fin_star,) = np.where(Etot_s[neg_star] != -np.inf)

        # Normalize the two variables: E between 0 and 1; Jz between -1 and 1.
        E = E_tot[neg][fin] / np.abs(np.min(E_tot[neg][fin]))

        kk = self.angular_momentum().arr_.J_part[2, :][neg][fin]

        Jz = kk / np.max(np.abs(kk))

        # Build the specific energy binning and select the Jz values to
        # calculate J_circ.
        aux0 = np.arange(-1.0, -0.1, bin0)
        aux1 = np.arange(-0.1, 0.0, bin1)

        aux = np.concatenate([aux0, aux1], axis=0)

        x = np.zeros(len(aux) + 1)
        y = np.zeros(len(aux) + 1)

        x[0] = -1.0
        y[0] = np.abs(Jz[np.argmin(E)])

        for i in range(1, len(aux)):
            (mask,) = np.where((E <= aux[i]) & (E > aux[i - 1]))
            s = np.argsort(np.abs(Jz[mask]))

            # We take into account whether or not there are particles in the
            # specific energy bins.
            if len(s) != 0:
                if len(s) == 1:
                    x[i] = E[mask][s]
                    y[i] = np.abs(Jz[mask][s])
                else:
                    if (
                        1.0
                        - (np.abs(Jz[mask][s][-2]) / np.abs(Jz[mask][s][-1]))
                    ) >= 0.01:
                        x[i] = E[mask][s][-2]
                        y[i] = np.abs(Jz[mask][s][-2])
                    else:
                        x[i] = E[mask][s][-1]
                        y[i] = np.abs(Jz[mask][s][-1])
            else:
                pass

        # Mask to complete the last bin, in case there are no empty bins.
        (mask,) = np.where(E > aux[len(aux) - 1])

        if len(mask) != 0:
            x[len(aux)] = E[mask][np.abs(Jz[mask]).argmax()]
            y[len(aux)] = np.abs(Jz[mask][np.abs(Jz[mask]).argmax()])

        # In case there are empty bins, we get rid of them.
        else:
            i = len(np.where(y == 0)[0]) - 1
            if i == 0:
                x = x[:-1]
                y = y[:-1]
            else:
                x = x[:-i]
                y = y[:-i]

        # In case some intermediate bin does not have points.
        (zero,) = np.where(x != 0.0)
        x = x[zero]
        y = y[zero]

        new = attr.asdict(self, recurse=False)
        del new["arr_"]
        new.update(x=u.Quantity(x), y=u.Quantity(y))

        return Galaxy(**new)

    @property
    def paramcirc(self):
        """
        Circularity parameter calculation.

        Return
        ------
        tuple : `float`
            (E_star, eps, eps_r): Normalized specific energy of the stars,
            circularity parameter (J_z/J_circ), J_p/J_circ.
            Shape(n_s, 1). Unit: dimensionless

        Notes
        -----
        J_z : z-component of normalized specific angular momentum.

        J_circ : Specific circular angular momentum.

        J_p : Projection on the xy plane of the normalized specific angular
        momentum.

        Examples
        --------
        This returns the normalized specific energy of stars (E_star), the
        circularity parameter (eps : J_z/J_circ) and
        eps_r: (J_p/J_circ).

        >>> import galaxychop as gc
        >>> galaxy = gc.Galaxy(...)
        >>> E_star, eps, eps_r = galaxy.paramcirc

        """
        Etot_s = self.energy[0].value
        Etot_dm = self.energy[1].value
        Etot_g = self.energy[2].value

        E_tot = np.hstack([Etot_s, Etot_dm, Etot_g])

        E_star_ = np.full(len(Etot_s), np.nan)
        eps_ = np.full(len(Etot_s), np.nan)
        eps_r_ = np.full(len(Etot_s), np.nan)

        # Remove the particles that are not bound: E > 0.
        (neg,) = np.where(E_tot <= 0.0)
        (neg_star,) = np.where(Etot_s <= 0.0)

        # Remove the particles with E = -inf.
        (fin,) = np.where(E_tot[neg] != -np.inf)
        (fin_star,) = np.where(Etot_s[neg_star] != -np.inf)

        # Normalize E, Lz and Lr for the stars.
        up1 = Etot_s[neg_star][fin_star]
        down1 = np.abs(np.min(E_tot[neg][fin]))
        E_star = up1 / down1

        ang_momentum = self.angular_momentum().arr_
        up2 = ang_momentum.J_star[2, :][neg_star][fin_star]
        down2 = np.max(np.abs(ang_momentum.J_part[2, :][neg][fin]))

        Jz_star_norm = up2 / down2

        up3 = ang_momentum.Jr_star[neg_star][fin_star]
        down3 = np.max(np.abs(ang_momentum.Jr_part[neg][fin]))
        Jr_star_norm = up3 / down3

        # We do the interpolation to calculate the J_circ.
        # spl = InterpolatedUnivariateSpline(
        #    self.jcirc().arr_.x,
        #    self.jcirc().arr_.y,
        #    k=1,
        # )

        # Calculates of the circularity parameter Lz/Lc.
        # eps = J_star_ / spl(E_star)
        jcir = self.jcirc().arr_
        eps = Jz_star_norm / np.interp(E_star, jcir.x, jcir.y)

        # Calculates the same for Lp/Lc.
        # eps_r = Jr_star_ / spl(E_star)
        eps_r = Jr_star_norm / np.interp(E_star, jcir.x, jcir.y)

        # We remove particles that have circularity < -1 and circularity > 1.
        (mask,) = np.where((eps <= 1.0) & (eps >= -1.0))

        E_star_[neg_star[fin_star[mask]]] = E_star[mask]
        eps_[neg_star[fin_star[mask]]] = eps[mask]
        eps_r_[neg_star[fin_star[mask]]] = eps_r[mask]

        return (E_star_, eps_, eps_r_)

    def values(self):
        """
        2D and 1D inputs converter.

        Builds two arrays: one 2D listing all the parameters of each
        particle and other 1D showing whether the particle is a star,
        gas or dark matter one.

        Returns
        -------
        X : `np.ndarray(n,10)`
            2D array where each file it is a diferent stellar particle and
            each column is a parameter of the particles:
            (m_s, x_s, y_s, z_s, vx_s, vy_s, vz_z, E_s, eps_s, eps_r_s)
        y : `np.ndarray(n)`
            1D array where is identified the nature of each particle
            0=star.
        """
        X = np.empty((0, 10))
        y = np.empty(0, int)

        star = True
        if star:
            n_s = len(self.paramcirc[1])

            X_s = np.hstack(
                (
                    self.arr_.m_s.reshape(n_s, 1),
                    self.arr_.x_s.reshape(n_s, 1),
                    self.arr_.y_s.reshape(n_s, 1),
                    self.arr_.z_s.reshape(n_s, 1),
                    self.arr_.vx_s.reshape(n_s, 1),
                    self.arr_.vy_s.reshape(n_s, 1),
                    self.arr_.vz_s.reshape(n_s, 1),
                    self.paramcirc[0].reshape(n_s, 1),
                    self.paramcirc[1].reshape(n_s, 1),
                    self.paramcirc[2].reshape(n_s, 1),
                )
            )
            y_s = np.zeros(n_s)

            X = np.vstack((X, X_s))
            y = np.hstack((y, y_s))

        return X, y