Esempio n. 1
0
def include_image_level_features(orig_imga,fvector_l,featsel):
    # include grayscale values ?
    f_input_gray = featsel['input_gray']
    if f_input_gray is not None:
        shape = f_input_gray
        #print orig_imga.shape
        fvector_l += [sp.misc.imresize(colorconv.gray_convert(orig_imga), shape).ravel()]

    # include color histograms ?
    f_input_colorhists = featsel['input_colorhists']
    if f_input_colorhists is not None:
        nbins = f_input_colorhists
        colorhists = sp.empty((3,nbins), 'f')
        if orig_imga.ndim == 3:
            for d in xrange(3):
                h = sp.histogram(orig_imga[:,:,d].ravel(),
                                 bins=nbins,
                                 range=[0,255])
                binvals = h[0].astype('f')
                colorhists[d] = binvals
        else:
            raise ValueError, "orig_imga.ndim == 3"
            #h = sp.histogram(orig_imga[:,:].ravel(),
            #                 bins=nbins,
            #                 range=[0,255])
            #binvals = h[0].astype('f')
            #colorhists[:] = binvals

        #feat_l += [colorhists.ravel()]
        fvector_l += [colorhists.ravel()]

    return fvector_l
Esempio n. 2
0
def image_preprocessing(arr,params):

    arr = sp.atleast_3d(arr)

    smallest_edge = min(arr.shape[:2])

    rep = params
    
    preproc_lsum = rep['preproc']['lsum_ksize']
    if preproc_lsum is None:
        preproc_lsum = 1
    smallest_edge -= (preproc_lsum-1)
            
    normin_kshape = rep['normin']['kshape']
    smallest_edge -= (normin_kshape[0]-1)

    filter_kshape = rep['filter']['kshape']
    smallest_edge -= (filter_kshape[0]-1)
        
    normout_kshape = rep['normout']['kshape']
    smallest_edge -= (normout_kshape[0]-1)
        
    pool_lsum = rep['pool']['lsum_ksize']
    smallest_edge -= (pool_lsum-1)

    arrh, arrw, _ = arr.shape

    if smallest_edge <= 0 and rep['conv_mode'] == 'valid':
        if arrh > arrw:
            new_w = arrw - smallest_edge + 1
            new_h =  int(np.round(1.*new_w  * arrh/arrw))
            print new_w, new_h
            raise
        elif arrh < arrw:
            new_h = arrh - smallest_edge + 1
            new_w =  int(np.round(1.*new_h  * arrw/arrh))
            print new_w, new_h
            raise
        else:
            pass
    
    # TODO: finish image size adjustment
    assert min(arr.shape[:2]) > 0

    # use the first 3 channels only
    orig_imga = arr.astype("float32")[:,:,:3]

    # make sure that we don't have a 3-channel (pseudo) gray image
    if orig_imga.shape[2] == 3 \
            and (orig_imga[:,:,0]-orig_imga.mean(2) < 0.1*orig_imga.max()).all() \
            and (orig_imga[:,:,1]-orig_imga.mean(2) < 0.1*orig_imga.max()).all() \
            and (orig_imga[:,:,2]-orig_imga.mean(2) < 0.1*orig_imga.max()).all():
        orig_imga = sp.atleast_3d(orig_imga[:,:,0])

    # rescale to [0,1]
    #print orig_imga.min(), orig_imga.max()
    if orig_imga.min() == orig_imga.max():
        raise MinMaxError("[ERROR] orig_imga.min() == orig_imga.max() "
                          "orig_imga.min() = %f, orig_imga.max() = %f"
                          % (orig_imga.min(), orig_imga.max())
                          )
    
    orig_imga -= orig_imga.min()
    orig_imga /= orig_imga.max()

    # -- color conversion
    # insure 3 dims
    #print orig_imga.shape
    if orig_imga.ndim == 2 or orig_imga.shape[2] == 1:
        orig_imga_new = sp.empty(orig_imga.shape[:2] + (3,), dtype="float32")
        orig_imga.shape = orig_imga_new[:,:,0].shape
        orig_imga_new[:,:,0] = 0.2989*orig_imga
        orig_imga_new[:,:,1] = 0.5870*orig_imga
        orig_imga_new[:,:,2] = 0.1141*orig_imga
        orig_imga = orig_imga_new    


    if params['color_space'] == 'rgb':
        orig_imga_conv = orig_imga
#     elif params['color_space'] == 'rg':
#         orig_imga_conv = colorconv.rg_convert(orig_imga)
    elif params['color_space'] == 'rg2':
        orig_imga_conv = colorconv.rg2_convert(orig_imga)
    elif params['color_space'] == 'gray':
        orig_imga_conv = colorconv.gray_convert(orig_imga)
        orig_imga_conv.shape = orig_imga_conv.shape + (1,)
    elif params['color_space'] == 'opp':
        orig_imga_conv = colorconv.opp_convert(orig_imga)
    elif params['color_space'] == 'oppnorm':
        orig_imga_conv = colorconv.oppnorm_convert(orig_imga)
    elif params['color_space'] == 'chrom':
        orig_imga_conv = colorconv.chrom_convert(orig_imga)
#     elif params['color_space'] == 'opponent':
#         orig_imga_conv = colorconv.opponent_convert(orig_imga)
#     elif params['color_space'] == 'W':
#         orig_imga_conv = colorconv.W_convert(orig_imga)
    elif params['color_space'] == 'hsv':
        orig_imga_conv = colorconv.hsv_convert(orig_imga)
    else:
        raise ValueError, "params['color_space'] not understood"
        
    return orig_imga,orig_imga_conv