Esempio n. 1
0
    def coloc_mod_on_pro(self,
                         model,
                         profiles,
                         varnames,
                         select=None,
                         method='nearest'):
        '''Colocalize model on profile data.

        Load model data corresponding to the selected profiles positions and time.

        Returns loaded model longitudes, latitudes, depths and requested variable(s)

        :Params:
            - **model**: model data :class:`~vacumm.data.misc.dataset.Dataset`
            - **profiles**: profile data :class:`~vacumm.data.misc.profile.ProfilesDataset`
            - **varnames**: variables to load (ex: ('temp','sal') or (('temp','temperature'),('sal','salinity'))
            - **select**: selector
            - **method**: coloc method (**nearest** or **interp**)

        :Return:
            - **lons_mod**: model longitude coordinates, shape: (profile)
            - **lats_mod**: model latitude coordinates, shape: (profile)
            - **deps_mod**: model depth coordinates, shape: (level,profile)
            - **var1**: requested variables, shape: (level,profile)
            - ...
            - **varN**

        .. todo::
            - also load and return profile data here
            - exclude coords where profile data is masked (no data for specified depth)
            - return time coordinates
            - return depth and vars with shape (profile,level)

        '''

        self.verbose(
            'Colocalizing %s on %s\nvarnames: %s\nselect: %s\n method: %s',
            model.__class__.__name__, profiles.__class__.__name__, varnames,
            select, method)
        prof_pro = profiles.get_axis('profile', select=select)
        if prof_pro is None or not len(prof_pro):
            raise Exception('No profiles found, aborting')
        lev_pro = profiles.get_axis('level', select=select)
        time_pro = profiles.get_variable('time', select=select)
        lons_pro = profiles.get_variable('longitude', select=select)
        lats_pro = profiles.get_variable('latitude', select=select)
        dates = create_time(time_pro).asComponentTime()

        self.info('Number of profiles: %s', len(dates))
        self.info('Profiles time coverage: %s to %s', dates[0], dates[-1])

        # Init model
        td = model.get_time_res()
        dtmax = (td.days * 86400 + td.seconds, 'seconds')
        self.info('Detected model time step: %s', td)
        grid_mod = model.get_grid()
        xres, yres = resol(grid_mod)
        time_mod = model.get_time()
        ctime_mod = time_mod.asComponentTime()
        self.info('Model time coverage: %s to %s', ctime_mod[0], ctime_mod[-1])

        level_mod = model.get_level(select=select)
        lons_mod = MV2.zeros((len(prof_pro), )) + MV2.masked
        lats_mod = lons_mod.clone()
        deps_mod = MV2.zeros((len(level_mod), len(prof_pro))) + MV2.masked
        deps_mod.setAxis(1, prof_pro)
        lons_mod.id, lats_mod.id, deps_mod.id = 'longitude', 'latitude', 'depth'

        # Creation des variables demandees
        variables = []
        for n in varnames:
            v = MV2.zeros((len(level_mod), len(prof_pro))) + MV2.masked
            v.setAxis(1, prof_pro)
            v.id = is_iterable(n) and n[0] or n
            variables.append(v)

        cdms2.setAutoBounds(1)  # ???

        # Boucle temporelle
        for ip, date in enumerate(dates):
            try:
                # Limites spatiales
                lon = lons_pro[ip]
                lat = lats_pro[ip]
                lon_min = lon - 2 * xres
                lon_max = lon + 2 * xres
                lat_min = lat - 2 * yres
                lat_max = lat + 2 * yres
                date_interval = (add_time(date, -dtmax[0], dtmax[1]),
                                 add_time(date, dtmax[0], dtmax[1]), 'ccb')

                self.info('Colocalizing data for date %s, lon: %s, lat: %s',
                          date, lon, lat)

                # Methode 1 : donnees les plus proches
                if method == 'nearest':
                    sel = dict(time=(date, date, 'ccb'),
                               longitude=(lon, lon, 'ccb'),
                               latitude=(lat, lat, 'ccb'))
                    # Verifier la disponibilite des donnees
                    if time_mod.mapIntervalExt(sel['time']) is None:
                        self.warning('Time interval %s not found', sel['time'])
                        continue
                    if grid_mod.getLatitude().mapInterval(
                            sel['latitude']) is None:
                        self.warning('Latitude coordinate %s not found',
                                     sel['latitude'])
                        continue
                    if grid_mod.getLongitude().mapInterval(
                            sel['longitude']) is None:
                        self.warning('Longitude coordinate %s not found',
                                     sel['longitude'])
                        continue

                    # Load tmp depth to get lon & lat coordinates
                    #tmp = model.get_depth(select=sel, squeeze=False) # tmp squeezed !!! see sigma ?
                    tmp = model.get_variable(varnames[0],
                                             select=sel,
                                             squeeze=False)
                    lons_mod[ip] = tmp.getLongitude()[0]
                    lats_mod[ip] = tmp.getLatitude()[0]
                    deps_mod[:, ip] = model.get_depth(select=sel, squeeze=True)
                    for iv, vn in enumerate(varnames):
                        variables[iv][:, ip] = model.get_variable(vn,
                                                                  select=sel,
                                                                  squeeze=True)

                # Methode 2 : interpolation
                elif method == 'interp':
                    sel = dict(time=date_interval,
                               longitude=(lon_min, lon_max),
                               latitude=(lat_min, lat_max))
                    if time_mod.mapIntervalExt(sel['time']) is None:
                        self.warning('Time interval %s not found', sel['time'])
                        continue
                    if grid_mod.getLatitude().mapInterval(
                            sel['latitude']) is None:
                        self.warning('Latitude coordinate %s not found',
                                     sel['latitude'])
                        continue
                    if grid_mod.getLongitude().mapInterval(
                            sel['longitude']) is None:
                        self.warning('Longitude coordinate %s not found',
                                     sel['longitude'])
                        continue

                    # Lectures
                    order = 'tzyx'
                    # lon & lat du profile car interp sur cette position
                    lons_mod[ip], lats_mod[ip] = lon, lat
                    deps_mod_tzyx = model.get_depth(select=sel,
                                                    order=order,
                                                    squeeze=True)
                    tmp_tzyx = []
                    for iv, vn in enumerate(varnames):
                        tmp_tzyx.append(
                            model.get_variable(vn,
                                               select=sel,
                                               order=order,
                                               squeeze=True))

                    # Interpolations temporelles
                    mctime = tmp_tzyx[0].getTime()
                    mrtime = mctime.asRelativeTime()
                    d0 = date.torel(mctime.units).value - mrtime[0].value
                    d1 = mrtime[1].value - date.torel(mctime.units).value
                    f0 = d0 / (d0 + d1)
                    f1 = d1 / (d0 + d1)
                    deps_mod_zyx = f0 * deps_mod_tzyx[0] + f1 * deps_mod_tzyx[1]
                    tmp_zyx = []
                    for iv, vn in enumerate(varnames):
                        tmp_zyx.append(f0 * tmp_tzyx[iv][0] +
                                       f1 * tmp_tzyx[iv][1])
                    del tmp_tzyx

                    # Interpolations spatiales
                    deps_mod[:, ip] = numpy.squeeze(
                        grid2xy(deps_mod_zyx,
                                numpy.array([lon]),
                                numpy.array([lat]),
                                method='nat'))
                    for iv, vn in enumerate(varnames):
                        variables[iv][:, ip] = numpy.squeeze(
                            grid2xy(tmp_zyx[iv],
                                    numpy.array([lon]),
                                    numpy.array([lat]),
                                    method='nat'))
                    del tmp_zyx

                else:
                    raise ValueError('Invalid colocation method: %s' %
                                     (method))
            except:
                self.exception('Failed to colocalize data for date %s', date)

        for v in [deps_mod] + variables:
            v.getAxis(0).id = 'level'
            v.getAxis(0).designateLevel()

        data = tuple([lons_mod, lats_mod, deps_mod] + variables)
        self.verbose('Colocalized data:\n  %s',
                     '\n  '.join(self.describe(o) for o in data))
        return data
Esempio n. 2
0
    def coloc_mod_on_pro(self, model, profiles, varnames, select=None, method='nearest'):
        '''Colocalize model on profile data.

        Load model data corresponding to the selected profiles positions and time.

        Returns loaded model longitudes, latitudes, depths and requested variable(s)

        :Params:
            - **model**: model data :class:`~vacumm.data.misc.dataset.Dataset`
            - **profiles**: profile data :class:`~vacumm.data.misc.profile.ProfilesDataset`
            - **varnames**: variables to load (ex: ('temp','sal') or (('temp','temperature'),('sal','salinity'))
            - **select**: selector
            - **method**: coloc method (**nearest** or **interp**)

        :Return:
            - **lons_mod**: model longitude coordinates, shape: (profile)
            - **lats_mod**: model latitude coordinates, shape: (profile)
            - **deps_mod**: model depth coordinates, shape: (level,profile)
            - **var1**: requested variables, shape: (level,profile)
            - ...
            - **varN**

        .. todo::
            - also load and return profile data here
            - exclude coords where profile data is masked (no data for specified depth)
            - return time coordinates
            - return depth and vars with shape (profile,level)

        '''

        self.verbose('Colocalizing %s on %s\nvarnames: %s\nselect: %s\n method: %s', model.__class__.__name__, profiles.__class__.__name__, varnames, select, method)
        prof_pro = profiles.get_axis('profile', select=select)
        if prof_pro is None or not len(prof_pro):
            raise Exception('No profiles found, aborting')
        lev_pro = profiles.get_axis('level', select=select)
        time_pro = profiles.get_variable('time', select=select)
        lons_pro = profiles.get_variable('longitude', select=select)
        lats_pro = profiles.get_variable('latitude', select=select)
        dates = create_time(time_pro).asComponentTime()

        self.info('Number of profiles: %s', len(dates))
        self.info('Profiles time coverage: %s to %s', dates[0], dates[-1])

        # Init model
        td = model.get_time_res()
        dtmax = (td.days*86400+td.seconds, 'seconds')
        self.info('Detected model time step: %s', td)
        grid_mod = model.get_grid()
        xres, yres = resol(grid_mod)
        time_mod = model.get_time()
        ctime_mod = time_mod.asComponentTime()
        self.info('Model time coverage: %s to %s', ctime_mod[0], ctime_mod[-1])

        level_mod = model.get_level(select=select)
        lons_mod = MV2.zeros((len(prof_pro),))+MV2.masked
        lats_mod = lons_mod.clone()
        deps_mod = MV2.zeros((len(level_mod), len(prof_pro)))+MV2.masked
        deps_mod.setAxis(1, prof_pro)
        lons_mod.id, lats_mod.id, deps_mod.id = 'longitude', 'latitude', 'depth'

        # Creation des variables demandees
        variables = []
        for n in varnames:
            v = MV2.zeros((len(level_mod), len(prof_pro)))+MV2.masked
            v.setAxis(1, prof_pro)
            v.id = is_iterable(n) and n[0] or n
            variables.append(v)

        cdms2.setAutoBounds(1) # ???

        # Boucle temporelle
        for ip, date in enumerate(dates):
            try:
                # Limites spatiales
                lon = lons_pro[ip]
                lat = lats_pro[ip]
                lon_min = lon-2*xres
                lon_max = lon+2*xres
                lat_min = lat-2*yres
                lat_max = lat+2*yres
                date_interval = (add_time(date, - dtmax[0], dtmax[1]), add_time(date, dtmax[0], dtmax[1]), 'ccb')

                self.info('Colocalizing data for date %s, lon: %s, lat: %s', date, lon, lat)

                # Methode 1 : donnees les plus proches
                if method == 'nearest':
                    sel = dict(time=(date, date, 'ccb'), longitude=(lon, lon, 'ccb'), latitude=(lat, lat, 'ccb'))
                    # Verifier la disponibilite des donnees
                    if time_mod.mapIntervalExt(sel['time']) is None:
                        self.warning('Time interval %s not found', sel['time'])
                        continue
                    if grid_mod.getLatitude().mapInterval(sel['latitude']) is None:
                        self.warning('Latitude coordinate %s not found', sel['latitude'])
                        continue
                    if grid_mod.getLongitude().mapInterval(sel['longitude']) is None:
                        self.warning('Longitude coordinate %s not found', sel['longitude'])
                        continue

                    # Load tmp depth to get lon & lat coordinates
                    #tmp = model.get_depth(select=sel, squeeze=False) # tmp squeezed !!! see sigma ?
                    tmp = model.get_variable(varnames[0], select=sel, squeeze=False)
                    lons_mod[ip] = tmp.getLongitude()[0]
                    lats_mod[ip] = tmp.getLatitude()[0]
                    deps_mod[:, ip] =  model.get_depth(select=sel, squeeze=True)
                    for iv,vn in enumerate(varnames):
                        variables[iv][:,ip] = model.get_variable(vn, select=sel, squeeze=True)

                # Methode 2 : interpolation
                elif method == 'interp':
                    sel = dict(time=date_interval, longitude=(lon_min, lon_max), latitude=(lat_min, lat_max))
                    if time_mod.mapIntervalExt(sel['time']) is None:
                        self.warning('Time interval %s not found', sel['time'])
                        continue
                    if grid_mod.getLatitude().mapInterval(sel['latitude']) is None:
                        self.warning('Latitude coordinate %s not found', sel['latitude'])
                        continue
                    if grid_mod.getLongitude().mapInterval(sel['longitude']) is None:
                        self.warning('Longitude coordinate %s not found', sel['longitude'])
                        continue

                    # Lectures
                    order = 'tzyx'
                    # lon & lat du profile car interp sur cette position
                    lons_mod[ip], lats_mod[ip] = lon, lat
                    deps_mod_tzyx = model.get_depth(select=sel, order=order, squeeze=True)
                    tmp_tzyx = []
                    for iv,vn in enumerate(varnames):
                        tmp_tzyx.append(model.get_variable(vn, select=sel, order=order, squeeze=True))

                    # Interpolations temporelles
                    mctime = tmp_tzyx[0].getTime()
                    mrtime = mctime.asRelativeTime()
                    d0 = date.torel(mctime.units).value - mrtime[0].value
                    d1 = mrtime[1].value - date.torel(mctime.units).value
                    f0 = d0 / (d0 + d1)
                    f1 = d1 / (d0 + d1)
                    deps_mod_zyx = f0 * deps_mod_tzyx[0] + f1 * deps_mod_tzyx[1]
                    tmp_zyx = []
                    for iv,vn in enumerate(varnames):
                        tmp_zyx.append(f0 * tmp_tzyx[iv][0] + f1 * tmp_tzyx[iv][1])
                    del tmp_tzyx

                    # Interpolations spatiales
                    deps_mod[:,ip] = numpy.squeeze(grid2xy(deps_mod_zyx, numpy.array([lon]), numpy.array([lat]), method='nat'))
                    for iv,vn in enumerate(varnames):
                        variables[iv][:,ip] = numpy.squeeze(grid2xy(tmp_zyx[iv], numpy.array([lon]), numpy.array([lat]), method='nat'))
                    del tmp_zyx

                else:
                    raise ValueError('Invalid colocation method: %s'%(method))
            except:
                self.exception('Failed to colocalize data for date %s', date)

        for v in [deps_mod] + variables:
            v.getAxis(0).id = 'level'
            v.getAxis(0).designateLevel()

        data = tuple([lons_mod, lats_mod, deps_mod] + variables)
        self.verbose('Colocalized data:\n  %s', '\n  '.join(self.describe(o) for o in data))
        return data
Esempio n. 3
0
    def plot_layer_mod_on_pro(self,
                              model,
                              profiles,
                              varname,
                              depth,
                              select=None,
                              **kwargs):
        '''Get a layer of variable for a specified depth.

        :Params:

          - **varname**: variable to process
          - **depth**: output depth(s)

          Other params, see: :func:`coloc_mod_on_pro`

        '''
        self.verbose(
            'Plotting layer of colocalized %s on %s\nvarname: %s\ndepth: %s\nselect: %s\nkwargs: %s',
            model.__class__.__name__, profiles.__class__.__name__, varname,
            depth, select, kwargs)

        lons_mod, lats_mod, deps_mod, var_mod = \
            self.coloc_mod_on_pro(
                model, profiles,
                # If varname is a list of possible names, wrap it into a
                # tuple of one element as we are requiring only one variable
                len(numpy.shape(varname)) and (varname,) or varname,
                select, **kwargs)

        odep = create_dep(is_iterable(depth) and depth or [depth])
        var_mod = var_mod.reorder('-z')
        var_mod = interp1d(var_mod, axo=odep, xmap=0,
                           xmapper=deps_mod)  # Required order: ...z
        var_mod = var_mod.reorder('z-')
        model.verbose('layer:  %s', var_mod)

        lons_pro, lats_pro, var_pro = profiles.get_layer(varname,
                                                         depth,
                                                         select=select)
        profiles.verbose('layer:  %s', var_pro)

        # =====
        # Tracés
        vmin = var_pro.min()
        vmax = var_pro.max()
        if var_mod.count():
            vmin = min(var_mod.min(), vmin)
            vmax = max(var_mod.max(), vmax)
        else:
            self.warning('No model data')
        if 'latitude' in select:
            lat_min, lat_max = select['latitude'][:2]
        else:
            la = model.get_latitude()
            lat_min, lat_max = min(la), max(la)
        if 'longitude' in select:
            lon_min, lon_max = select['longitude'][:2]
        else:
            lo = model.get_longitude()
            lon_min, lon_max = min(lo), max(lo)

        levels = auto_scale((vmin, vmax))
        vmin = levels[0]
        vmax = levels[-1]
        # Création de la palette
        cmap = cmap_magic(levels)
        # On trace de champ du modèle moyené sur la période choisie
        m = map2(lon=(lon_min, lon_max), lat=(lat_min, lat_max), show=False)
        # On trace le modèle en fond

        # =====
        msca = None
        try:
            msca = m.map.scatter(lons_mod,
                                 lats_mod,
                                 s=100,
                                 c=var_mod,
                                 vmin=vmin,
                                 vmax=vmax,
                                 cmap=cmap,
                                 label='model')
        except:
            self.exception('Failed plotting model data')
        # =====
        # Triangulation du modèle
        #        import matplotlib.tri as tri
        #        triang = tri.Triangulation(lons_mod, lats_mod)
        #        # On trace le modèle en fond
        #        mod = m.axes.tripcolor(triang, var_mod, vmin=vmin, vmax=vmax, cmap=cmap)
        # =====

        # On trace les observations avec des points plus petits
        psca = None
        try:
            psca = m.map.scatter(lons_pro,
                                 lats_pro,
                                 s=25,
                                 c=var_pro,
                                 vmin=m.vmin,
                                 vmax=m.vmax,
                                 cmap=m.cmap,
                                 label='profiles')
        except:
            self.exception('Failed plotting profile data')

        # Colorbar
        if msca is not None:
            colorbar(msca)
        elif psca is not None:
            colorbar(psca)
Esempio n. 4
0
    def plot_layer_mod_on_pro(self, model, profiles, varname, depth, select=None, **kwargs):
        '''Get a layer of variable for a specified depth.

        :Params:

          - **varname**: variable to process
          - **depth**: output depth(s)

          Other params, see: :func:`coloc_mod_on_pro`

        '''
        self.verbose('Plotting layer of colocalized %s on %s\nvarname: %s\ndepth: %s\nselect: %s\nkwargs: %s',
            model.__class__.__name__, profiles.__class__.__name__, varname, depth, select, kwargs)

        lons_mod, lats_mod, deps_mod, var_mod = \
            self.coloc_mod_on_pro(
                model, profiles,
                # If varname is a list of possible names, wrap it into a
                # tuple of one element as we are requiring only one variable
                len(numpy.shape(varname)) and (varname,) or varname,
                select, **kwargs)

        odep = create_dep(is_iterable(depth) and depth or [depth])
        var_mod = var_mod.reorder('-z')
        var_mod = interp1d(var_mod, axo=odep, xmap=0, xmapper=deps_mod) # Required order: ...z
        var_mod = var_mod.reorder('z-')
        model.verbose('layer:  %s', var_mod)

        lons_pro, lats_pro, var_pro = profiles.get_layer(varname, depth, select=select)
        profiles.verbose('layer:  %s', var_pro)

        # =====
        # Tracés
        vmin = var_pro.min()
        vmax = var_pro.max()
        if var_mod.count():
            vmin = min(var_mod.min(), vmin)
            vmax = max(var_mod.max(), vmax)
        else:
            self.warning('No model data')
        if 'latitude' in select:
            lat_min, lat_max = select['latitude'][:2]
        else:
            la = model.get_latitude()
            lat_min, lat_max = min(la), max(la)
        if 'longitude' in select:
            lon_min, lon_max = select['longitude'][:2]
        else:
            lo = model.get_longitude()
            lon_min, lon_max = min(lo), max(lo)

        levels = auto_scale((vmin, vmax))
        vmin = levels[0]
        vmax = levels[-1]
        # Création de la palette
        cmap = cmap_magic(levels)
        # On trace de champ du modèle moyené sur la période choisie
        m = map2(lon=(lon_min, lon_max), lat=(lat_min, lat_max), show=False)
        # On trace le modèle en fond

        # =====
        msca = None
        try: msca = m.map.scatter(lons_mod, lats_mod, s=100, c=var_mod, vmin=vmin, vmax=vmax, cmap=cmap, label='model')
        except: self.exception('Failed plotting model data')
        # =====
        # Triangulation du modèle
#        import matplotlib.tri as tri
#        triang = tri.Triangulation(lons_mod, lats_mod)
#        # On trace le modèle en fond
#        mod = m.axes.tripcolor(triang, var_mod, vmin=vmin, vmax=vmax, cmap=cmap)
        # =====

        # On trace les observations avec des points plus petits
        psca = None
        try: psca = m.map.scatter(lons_pro, lats_pro, s=25, c=var_pro, vmin=m.vmin, vmax=m.vmax, cmap=m.cmap, label='profiles')
        except: self.exception('Failed plotting profile data')

        # Colorbar
        if msca is not None:
            colorbar(msca)
        elif psca is not None:
            colorbar(psca)