Esempio n. 1
0
    def __init__(self, disc_hiddens=[1000, 1000, 1000],
                 gamma=30, input_size=(3, 64, 64),
                 kernel_sizes=[32, 32, 64, 64],
                 hidden_size=256, dim_z=32,
                 binary=True, **kwargs):
        """initialize neural networks
        :param disc_hiddens: list of int, numbers of hidden units of each layer in discriminator
        :param gamma: weight for total correlation term in loss function
        """
        super(ConvFactorVAE, self).__init__()
        self.gamma = gamma
        self.dim_z = dim_z
        self.binary = binary
        self.input_size = input_size
        self.hidden_size = hidden_size

        # VAE networks
        self.vae = ConvVAE(input_size, kernel_sizes, hidden_size, dim_z, binary, **kwargs)
        # inherit some attributes
        self.channel_sizes = self.vae.channel_sizes

        # discriminator networks
        D_act = nn.LeakyReLU
        D_act_args = {"negative_slope": 0.2, "inplace": False}
        D_output_dim = 2
        self.discriminator = nns.create_mlp(
            self.dim_z, disc_hiddens, act_layer=D_act, act_args=D_act_args)
        self.discriminator = nn.Sequential(
            self.discriminator,
            nn.Linear(disc_hiddens[-1], D_output_dim))
Esempio n. 2
0
 def __init__(self, load_model=True):
     self.env_name = "carracing"
     self.vae = ConvVAE(batch_size=1,
                        gpu_mode=False,
                        is_training=False,
                        reuse=True)
     self.rnn = MDNRNN(hps_sample, gpu_mode=False, reuse=True)
     if load_model:
         self.vae.load_json('Weights/vae_weights.json')
         self.rnn.load_json('Weights/rnn_weights.json')
     self.state = rnn_init_state(self.rnn)
     self.rnn_mode = True
     self.input_size = rnn_output_size(EXP_MODE)
     self.z_size = 32
     if EXP_MODE == MODE_Z_HIDDEN:
         self.hidden_size = 40
         self.weight_hidden = np.random.randn(self.input_size,
                                              self.hidden_size)
         self.bias_hidden = np.random.randn(self.hidden_size)
         self.weight_output = np.random.randn(self.hidden_size, 3)
         self.bias_output = np.random.randn(3)
         self.param_count = ((self.input_size + 1) *
                             self.hidden_size) + (self.hidden_size * 3 + 3)
     else:
         self.weight = np.random.randn(self.input_size, 3)
         self.bias = np.random.randn(3)
         self.param_count = (self.input_size) * 3 + 3
     self.render_mode = False
kl_tolerance = 0.5
filelist = os.listdir(DATA_DIR)
filelist.sort()
filelist = filelist[0:10000]
dataset, action_dataset = load_raw_data_list(filelist)

# Resetting the graph of the VAE model

reset_graph()

# Creating the VAE model as an object of the ConvVAE class

vae = ConvVAE(z_size=z_size,
              batch_size=batch_size,
              learning_rate=learning_rate,
              kl_tolerance=kl_tolerance,
              is_training=False,
              reuse=False,
              gpu_mode=True)

# Loading the weights of the VAE model

vae.load_json(os.path.join(model_path_name, 'vae.json'))

# Running the main code that generates the data from the VAE model for the MDN-RNN model

mu_dataset = []
logvar_dataset = []
for i in range(len(dataset)):
    data_batch = dataset[i]
    mu, logvar, z = encode_batch(data_batch)
Esempio n. 4
0
    os.makedirs(out_path, exist_ok=True)

    # check for GPU
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # load data
    print("Loading data")
    train_dataloader = get_dataloader(opt)
    test_dataloader = None
    n = len(train_dataloader.dataset)
    iter_per_epoch = math.ceil(n / opt.batch_size)
    # run
    start = time.time()
    print("Training")

    vae = ConvVAE(opt).to(device)
    optimizer = optim.Adam(vae.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

    discriminator = Discriminator(opt.latent_dim).to(device)
    optimizer_d = optim.Adam(discriminator.parameters(),
                             lr=opt.lrd,
                             betas=(opt.b1d, opt.b2d))

    losses_train = []
    reconstruction_error = []
    kl_divergence = []
    total_correlation = []
    discriminator_loss = []
    losses_test = []

    dimension_kld = run()
Esempio n. 5
0
def main():
    parser = argparse.ArgumentParser(description='VAE')
    parser.add_argument(
        '--weights',
        type=str,
        default=None,
        help='Load weigths for the VAE, not training the model')

    parser.add_argument('--batch-size',
                        type=int,
                        default=128,
                        help='Input batch size for training, 128 by default')

    parser.add_argument('--epochs',
                        type=int,
                        default=10,
                        help='Number of epochs to train, 10 by default')

    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        help='Random seed, 1 by default')

    parser.add_argument(
        '--log-interval',
        type=int,
        default=10,
        help='Interval between two logs of the training status')

    args = parser.parse_args()

    torch.manual_seed(args.seed)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if torch.cuda.is_available():
        kwargs = {'num_workers': 1, 'pin_memory': True}
    else:
        kwargs = {}

    train_dataset = datasets.MNIST('data',
                                   train=True,
                                   download=True,
                                   transform=transforms.ToTensor())

    test_dataset = datasets.MNIST('data',
                                  train=False,
                                  transform=transforms.ToTensor())

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               **kwargs)

    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=args.batch_size,
                                              shuffle=True,
                                              **kwargs)

    # model = FCVAE(channels=1, z_dim=2).to(device)
    model = ConvVAE(channels=1, z_dim=2).to(device)

    net_manager = NetManager(model,
                             device,
                             train_loader=train_loader,
                             test_loader=test_loader)

    if args.weights is None:
        net_manager.set_writer("vae")
        net_manager.train(args.epochs, log_interval=args.log_interval)

        if not os.path.exists("weights"):
            os.mkdir("weights")

        net_manager.save_net("weights/vae.pth")
    else:
        net_manager.load_net(args.weights)

    net_manager.plot_latent_space(dark_background=True)
Esempio n. 6
0
    crops = np.load(args["npy"])

    # parameters
    z_size=16
    batch_size, crop_size, _, _ = crops.shape

    print("batch_size {}".format(batch_size))
    print("crop_size {}".format(crop_size))

    cv2.imshow("crop",crops[0])
    cv2.waitKey(0)

    reset_graph()
    test_vae = ConvVAE(z_size=z_size,
                       batch_size=batch_size,
                       is_training=False,
                       reuse=False,
                       gpu_mode=True)

    # show reconstruction example
    test_vae.load_json("../../models/0/vae_{}.json".format(180000))
    z = test_vae.encode(crops)
    print(z.shape)

    rec = test_vae.decode(z)
    print(rec.shape)

    np.save("../../output/z_{}.npy".format(batch_size), z)
    np.save("../../output/rec_{}.npy".format(batch_size), rec)

    #for img_idx, img in enumerate(test_batch):
Esempio n. 7
0
    # run this file from the script folder
    data_path = "../data/dsprites/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz"

    n_train = 10000
    n_test = 5000

    path = "../results/dsprites/"

    metrics = {"train": None, "test": None}

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model_path = path + args.model + f"/parameter_{args.parameter}/seed_{args.seed}"
    model_data = torch.load(model_path + "/model.pt",
                            map_location=torch.device("cpu"))
    model = ConvVAE(model_data["opt"]).to(device)
    model.load_state_dict(state_dict=model_data["model"])
    opt = model_data["opt"]

    evaluate = Evaluator(data_path=data_path,
                         model=model,
                         opt=opt,
                         batch_size=64)

    if args.metric == "beta":
        metric_train, metric_test = evaluate.get_beta_metric(n_train, n_test)
        metrics["train"] = metric_train
        metrics["test"] = metric_test

    elif args.metric == "factor":
        metric_train, metric_test = evaluate.get_factor_metric(