Esempio n. 1
0
def make_cali_img_pairs(w,
                        h,
                        loc,
                        look_at,
                        direct1,
                        direct2,
                        rotate=[0, 0, 0],
                        trans=[0, 0, 0],
                        ctype=None,
                        rand_amount=1):
    cali_dir = os.path.join(CFD, "caliimg")
    light = vp.LightSource(
        # [2,4,-3],
        [0, 0, -10000],
        'color',
        "White",
        'rotate',
        [30, 0, 0],
        'rotate',
        [0, 88, 0])  # White light

    background = vp.Background("color", "White")  # White background

    center = np.array(look_at) + (np.random.rand(3) - 0.5) * rand_amount
    sphere = vp.Sphere(
        center,
        0.1,  # center, radius
        vp.Texture(vp.Pigment('color', "Black")))  # Black point

    l_camera = vp.Camera('location', loc, 'direction', direct1, 'up',
                         [0, 1, 0], 'right', [1 * w / h, 0, 0], 'look_at',
                         look_at)
    l_scene = vp.Scene(l_camera,
                       objects=[background, light, sphere],
                       included=["colors.inc"])
    l_img_path = os.path.join(cali_dir, "left.png")
    l_scene.render(l_img_path, width=w, height=h, auto_camera_angle=False)

    r_camera = vp.Camera('location', loc, 'direction', direct2, 'up',
                         [0, 1, 0], 'right', [1 * w / h, 0, 0], 'look_at',
                         look_at, 'rotate', rotate, 'translate', trans)
    r_scene = vp.Scene(r_camera,
                       objects=[background, light, sphere],
                       included=["colors.inc"])
    r_img_path = os.path.join(cali_dir, "right.png")
    r_scene.render(r_img_path, width=w, height=h, auto_camera_angle=False)

    with open(os.path.join(cali_dir, "left.pov"), "wb") as f:
        f.write(l_scene.__str__())

    with open(os.path.join(cali_dir, "right.pov"), "wb") as f:
        f.write(r_scene.__str__())

    return cv2.imread(l_img_path), cv2.imread(r_img_path)
Esempio n. 2
0
def povray_test():
  """ Just a purple sphere """
  scene = vapory.Scene(  vapory.Camera('location',  [0.0, 0.5, -4.0],
                         'direction', [0,0,1.5],
                         'look_at',  [0, 0, 0]),
  
                  objects = [
  
                      vapory.Background("color", [0.85, 0.75, 0.75]),
  
                      vapory.LightSource([0, 0, 0],
                                    'color',[1, 1, 1],
                                    'translate', [-5, 5, -5]),
  
                      vapory.LightSource ([0, 0, 0],
                                      'color', [0.25, 0.25, 0.25],
                                      'translate', [600, -600, -600]),
  
  
                      vapory.Box([-0.5, -0.5, -0.5], [0.5, 0.5, 0.5],
                           vapory.Texture( vapory.Pigment( 'color', [1,0,0]),
                                    vapory.Finish('specular', 0.6),
                                    vapory.Normal('agate', 0.25, 'scale', 0.5)),
                          'rotate', [45,46,47])
                 ]
  )
  # We use antialiasing. Remove this option for faster rendering.
  scene.render("cube.png", width=300, height=300, antialiasing=0.001)
Esempio n. 3
0
 def render(self, screen_size):
     light = vap.LightSource([3, 3, 3], 'color', [3, 3, 3], 'parallel',
                             'point_at', [0, 0, 0])
     camera = vap.Camera('location', [0.5 * 1, -2 * 1, 3 * 1], 'look_at',
                         [0, 0, 0], 'rotate', [20, 0, 0])
     ground = vap.Plane([0, 0, 1], 0, vap.Texture('T_Stone33'))
     walls = [wall.rendered for wall in self.wall]
     robots = [bot.rendered for bot in self.robot]
     obj = self.obj.rendered
     obj_pos_str = '\"{:2.2f}, {:2.2f}, {:2.2f}\"'.format(
         *self.obj.body.getPosition())
     for ir, robot in enumerate(self.robot):
         logger.info('{} - {:2.2f}, {:2.2f}, {:2.2f} - {st}'.format(
             ir, *robot.body.getPosition(), st=self.sim_time))
     logger.info('{} - {}'.format(obj_pos_str, self.sim_time))
     # obj_pos = vap.Text('ttf', '\"timrom.ttf\"', obj_pos_str, 0.1, '0.1 * x', 'rotate',
     #                    '<100,0,10>', 'translate', '-3*x', 'finish',
     #                    '{ reflection .25 specular 1  diffuse 0.1}', 'scale', [0.25, 0.25, 0.25])
     scene = vap.Scene(
         camera,
         [light, ground,
          vap.Background('color', [0.2, 0.2, 0.3]), obj] + robots + walls,
         included=["colors.inc", "textures.inc", "glass.inc", "stones.inc"])
     return scene.render(height=screen_size,
                         width=screen_size,
                         antialiasing=0.01,
                         remove_temp=False)
Esempio n. 4
0
    def setGeo(self, SS, SC, dist, North):
        SS_xyz = self.XYZ(SS['lon'], SS['lat'])
        SC_xyz = self.XYZ(SC['lon'], SC['lat'])

        declares = [
            'SS_lon = %f; // Subsolar      longitude [deg_W]' % SS['lon'],
            'SS_lat = %f; // Subsolar      latitude  [deg_N]' % SS['lat'],
            'SC_lon = %f; // Subspacecraft longitude [deg_W]' % SC['lon'],
            'SC_lat = %f; // Subspacecraft latitude  [deg_N]' % SC['lat'],
            'R_Body = %f; // Planetary body radius   [km]' %
            BODY_RADIUS[self.target]
        ]

        camera = pov.Camera('angle', INST_FOV[self.inst], 'location',
                            SC_xyz * dist, 'look_at', [0, 0, 0],
                            'Axis_Rotate_Trans(', SC_xyz, ',', -North, ')')
        light = pov.LightSource(SS_xyz * DIST_SUN[self.target], 'color',
                                'White')
        obj = pov.Object('Grid')
        self.scene = pov.Scene(
            declares=declares,
            camera=camera,
            objects=[light, obj],
            included=['colors.inc', 'transforms.inc', 'Planet_grid.inc'])
        return self
Esempio n. 5
0
 def generate_image(self):
     self.vapory_sene = vapory.Scene(
         self.vapory_camera,
         objects=[self.vapory_light, self.simulated_loop.loop_object])
     image_array = self.vapory_sene.render("/tmp/vapory_tmp_image.png",
                                           width=self.image_dimensions[0],
                                           height=self.image_dimensions[1])
     self.qimage = QImage("/tmp/vapory_tmp_image.png")
     self.emit("imageReceived", self.qimage, self.qimage.width(),
               self.qimage.height(), self.force_update)
Esempio n. 6
0
def povray_cells(goodArguments):
  with h5py.File(goodArguments.vbl_simulation_output_filename, 'r') as f:
    h5_cells_grp = f[goodArguments.grp_pattern + "/cells"]
    pos = h5_cells_grp['cell_center_pos']
    pos = np.asarray(pos)
    rad = h5_cells_grp['cell_radii']
    rad = np.asarray(rad)
    o2 = h5_cells_grp['o2']
    o2 = np.asarray(o2)
    x_min= np.min(pos[:,0])
    x_max = np.max(pos[:,0])
    center_x = x_min+0.5*(x_max-x_min)
    y_min= np.min(pos[:,1])
    y_max = np.max(pos[:,1])
    center_y = x_min+0.5*(y_max-y_min)
    z_min= np.min(pos[:,2])
    z_max = np.max(pos[:,2])
    center_z = z_min+0.5*(z_max-z_min)
    print('x: [%f,%f]' % (x_min, x_max))
    print('y: [%f,%f]' % (y_min, y_max))
    print('z: [%f,%f]' % (z_min, z_max))
    print('%f, %f, %f' %(center_x,center_y,center_z))
    #o2 = o2/np.max(o2)
#    x = pos[:,0]
#    y = pos[:,1]
#    z = pos[:,2]
#    s = rad[:,0]
  camera = vapory.Camera('location', [700,700,-700], 'look_at', [0,0,0])
  light = vapory.LightSource([1000,-1000,-1000], 'color', [1, 1, 1])
  light2 = vapory.LightSource([0,0,0], 'color',[1, 1, 1], 'translate', [1000,-1000,-1000] )
  light3 = vapory.LightSource([500,-1000,500], 'color', [1, 1, 1] )
  myObjectList = []
  myObjectList.append(light)
  myObjectList.append(light2)
  myObjectList.append(light3)
  
  cuttingY = vapory.Plane([0,1,0], 0,)
  cuttingX = vapory.Plane([1,0,0], -1,)
  max_rad = np.max(rad)
  max_o2 = np.max(o2)
  n= 10000
  for (aPosition, aRadius, aO2Value) in zip(pos[0:n], rad[0:n], o2[0:n]):
    thisSphere = vapory.Sphere( aPosition, aRadius[0])
    color = matplotlib.cm.hsv(aO2Value[0]/max_o2)
    #print(color[0:3])
    #cuttedSphere = vapory.Intersection(thisSphere, cuttingY, vapory.Texture( vapory.Pigment( 'color', color[0:3]  )))    
    #cuttedSphere = vapory.Intersection(thisSphere, cuttingY, cuttingX)    
    #cuttedSphere = thisSphere  
    #myObjectList.append(cuttedSphere)
    #myObjectList.append(thisSphere)
   # myObjectList.append(vapory.Sphere( aPosition, aRadius[0], vapory.Texture( vapory.Pigment( 'color', matplotlib.cm.Blues(aO2Value[0]/max_o2) ))))
    myObjectList.append(vapory.Sphere( aPosition, aRadius[0], vapory.Texture( vapory.Pigment( 'color', [1,0,0] ))))
    
  scene = vapory.Scene( camera, objects= myObjectList,  defaults = [vapory.Finish( 'ambient', 1.5)],)
  scene.render("purple_sphere.png", width=400, height=300,  antialiasing=0.01, remove_temp=True)
Esempio n. 7
0
def generateScenes():
    delta=0.1
    nbcubes=100
    
    light = vapory.LightSource( [2,4,-7], 'color', [2,2,2] )
    ambientlight=AmbientLight([1,1,1])
    

    
    objects=[light]
    rotation=[np.random.rand()*180,np.random.rand()*180,np.random.rand()*180]

    
    for k in range(nbcubes):   
        center=[0+np.random.randn()*3,0+np.random.randn()*2,0+np.random.rand()*2]
        #sphere=vapory.Sphere( center, 0.5, vapory.Pigment( 'color', [1,1,1]))
        #sphere=vapory.Sphere( center, 0.5, vapory.Pigment( 'color', np.random.rand(3) ),vapory.Finish('phong', 0.8,'reflection', 0.5)) 
        #objects.append(sphere) 
        #center=[0+np.random.randn()*2,0+np.random.randn()*2,0+np.random.rand()*2]
        
        #objects.append(vapory.Box( [-0.5,-0.5,-0.5], [ 0.5,0.5,0.5 ], 'rotate',rotation , 'translate',center ,vapory.Pigment( 'color', np.random.rand(3) ),vapory.Finish('phong', 0.8,'reflection', 0.0)))
    
    
        #center=[0+np.random.randn()*2,0+np.random.randn()*2,0+np.random.rand()*1.0]
    
        #sphere=vapory.Sphere( center, 0.5, vapory.Pigment( 'color', [1,1,1]))
        #sphere=vapory.Sphere( center, 0.5, vapory.Pigment( 'color', np.random.rand(3) ),vapory.Finish('phong', 0.8,'reflection', 0.5)) 
        #objects.append(sphere) 
        center=[0+np.random.randn()*3,0+np.random.randn()*2,0+np.random.rand()*2]
        
        #objects.append(vapory.Box( [-0.5,-0.5,-0.5], [ 0.5,0.5,0.5 ], 'rotate',rotation , 'translate',center ,vapory.Pigment( 'color', np.random.rand(3) ),vapory.Finish('phong', 0.8,'reflection', 0.1)))
        #objects.append(vapory.Box( [-0.5,-0.5,-0.5], [ 0.5,0.5,0.5 ], 'rotate',rotation , 'translate',center ,vapory.Pigment( 'color',[1,1,1] )))
        #objects.append(vapory.Box( [-0.5,-0.5,-0.5], [ 0.5,0.5,0.5 ], 'rotate',rotation , 'translate',center,vapory.Texture('Rosewood')))
        objects.append(vapory.Box( [-0.5,-0.5,-0.5], [ 0.5,0.5,0.5 ], 'rotate',rotation , 'translate',center,vapory.Texture('White_Marble')))
    #ground = vapory.Plane([0,1,0],0, vapory.Texture('Rosewood'))
    #objects.append(ground)
    camera_left = vapory.Camera( 'location', [0-delta,0,-5], 'look_at', [0-delta,0,0] ) # <= Increase for better quality
    camera_right = vapory.Camera( 'location', [0+delta,0,-5], 'look_at', [0+delta,0,0]) # <= Increase for better quality
    
    scene_left  = vapory.Scene( camera_left, objects= objects,included = ["colors.inc", "textures.inc"],)
    scene_right = vapory.Scene( camera_right, objects= objects,included = ["colors.inc", "textures.inc"],)
    return scene_left,scene_right
    def _render_scene(self, camera, objects):
        """
        Renders the window to 2D grayscale image
        Called from render function for each viewpoint
        """
        scene = vapory.Scene(camera=camera, objects=objects)
        img = scene.render(width=self.render_size[0],
                           height=self.render_size[1],
                           quality=3)
        img = rgb2gray(img)

        return img
        def scene(t):
            """
            Returns the scene at time 't' (in seconds)
            """

            head_location = np.array(location) - np.array([0, 0, head_size])
            import vapory
            light = vapory.LightSource([15, 15, 1], 'color',
                                       [light_intensity] * 3)
            background = vapory.Box(
                [0, 0, 0], [1, 1, 1],
                vapory.Texture(
                    vapory.Pigment(
                        vapory.ImageMap('png',
                                        '"../files/VISUEL_104.png"', 'once')),
                    vapory.Finish('ambient', 1.2)), 'scale',
                [self.background_depth, self.background_depth, 0], 'translate',
                [
                    -self.background_depth / 2, -.45 * self.background_depth,
                    -self.background_depth / 2
                ])
            me = vapory.Sphere(
                head_location, head_size,
                vapory.Texture(vapory.Pigment('color', [1, 0, 1])))
            self.t = t
            self.update()
            objects = [background, me, light]

            for i_lame in range(self.N_lame):
                #print(i_lame, self.lame_length[i_lame], self.lame_width[i_lame])
                objects.append(
                    vapory.Box(
                        [
                            -self.lame_length[i_lame] / 2, 0,
                            -self.lame_width[i_lame] / 2
                        ],
                        [
                            self.lame_length[i_lame] / 2, self.lames_height,
                            self.lame_width[i_lame] / 2
                        ],
                        vapory.Pigment('color', [1, 1, 1]),
                        vapory.Finish('phong', 0.8, 'reflection', reflection),
                        'rotate',
                        (0, -self.lames[2, i_lame] * 180 / np.pi, 0),  #HACK?
                        'translate',
                        (self.lames[0, i_lame], 0, self.lames[1, i_lame])))

            objects.append(light)
            return vapory.Scene(vapory.Camera('angle', fov, "location",
                                              location, "look_at", look_at),
                                objects=objects,
                                included=["glass.inc"])
Esempio n. 10
0
def render_povray(scene, filename='ipython', width=600, height=600,
                  antialiasing=0.01):
    '''Render the scene with povray for publication.

    :param dict scene: The scene to render
    :param string filename: Output filename or 'ipython' to render in the notebook.
    :param int width: Width in pixels.
    :param int height: Height in pixels.
    '''
    if not vapory_available:
        raise Exception("To render with povray, you need to have the vapory"
                        " package installed.")

    # Camera target
    aspect = scene['camera']['aspect']
    up = np.dot(rmatrixquaternion(scene['camera']['quaternion']), [0, 1, 0])
    v_fov = scene['camera']['vfov']  / 180.0 * np.pi
    h_fov = 2.0 * np.arctan(np.tan(v_fov/2.0) * aspect) / np.pi * 180
    # Setup camera position
    camera = vp.Camera( 'location', scene['camera']['location'],
                        'direction', [0, 0, -1],
                        'sky', up,
                        'look_at', scene['camera']['target'],
                        'angle', h_fov )

    # Lights
    light_sources = [vp.LightSource( np.array([2,4,-3]) * 1000, 'color', [1,1,1] ),
                     vp.LightSource( np.array([-2,-4,3]) * 1000, 'color', [1,1,1] ),
                     vp.LightSource( np.array([-1,2,3]) * 1000, 'color', [1,1,1] ),
                     vp.LightSource( np.array([1,-2,-3]) * 1000, 'color', [1,1,1] )]

    # Background -- white for now
    background = vp.Background([1, 1, 1])

    # Things to display
    stuff = _generate_objects(scene['representations'])

    scene = vp.Scene( camera, objects = light_sources + stuff + [background])

    return scene.render(filename, width=width, height=height,
                        antialiasing = antialiasing)
Esempio n. 11
0
    def render_scene(self, t=None):
        """Renders a single scene, applying the various perturbations on each
    object/light source in the Experiment.

    :returns: `(example, annotation)` pair.

    TODO:
    Call the make_targets() function, implemented by subclasses, that uses
    the object locations, orientations, etc. set by render_scene, to calculate
    the targets.
    """

        dynamic_objects = [obj(t) for obj in self.dynamic_objects]
        experiment_objects = [obj(t) for obj in self.experiment_objects]
        all_objects = self.static_objects + dynamic_objects + experiment_objects
        vap_scene = vapory.Scene(self.camera,
                                 all_objects,
                                 included=self.included)

        # image, annotation ndarrays of np.uint8s.
        image = vap_scene.render(height=self.image_shape[0],
                                 width=self.image_shape[1])
        if self.mode == 'L':
            image = img.grayscale(image)

        # Add noise
        if self.noisify:
            peak = 5000  # TODO: make fps dependent.
            image = np.random.poisson(image.astype(np.float64) / 255. * peak)
            image = (image / peak * 255.).astype(np.uint8)

        # compute annotation, label using most recently used args, produced by the
        # render call
        annotation, label = self.annotate_and_label()

        return (image, label), annotation
Esempio n. 12
0
def renderPopSpheres():
    nb_spheres = 50
    R = 5.
    centers = np.random.randint(100, size=(nb_spheres, 3))
    radius = np.random.randn(nb_spheres) * R + R
    couleurs = np.random.randint(255, size=(nb_spheres, 4)) / 255.

    camera = vapory.Camera('location', [150, 150, 150], 'look_at', [0, 0, 0])
    bg = vapory.Background('color', [1, 1, 1])
    light = vapory.LightSource([100, 100, 100], 'color', [1, 1, 1])
    light3 = vapory.LightSource([0, 0, 0], 'color', [1, 1, 1])
    light2 = vapory.LightSource([50, 50, 50], 'color', [1, 1, 1])

    obj = [light, light2, light3, bg]
    for i in range(nb_spheres):
        sphere = vapory.Sphere(
            centers[i, ], radius[i],
            vapory.Texture(
                vapory.Finish('ambient', 0, 'reflection', 0, 'specular', 0,
                              'diffuse', 1),
                vapory.Pigment('color', couleurs[i, ])))
        obj.append(sphere)
    scene = vapory.Scene(camera, objects=obj)
    scene.render("spheres.png", width=3000, height=3000)
Esempio n. 13
0
	def getScene(self, *, cameraLocation=[100,100,50], cameraTarget=[0,0,0], lightLocation=[100,100,100],
		                    lightColor=[1,1,1], backgroundColor=[0,0,0], objectColor=[0.5,0.5,0.5],
		                    rotationAxis=None, rotationAngle=None):
		# POVRay uses a left-handed coordinate system, so we have to flip the Z axis on all geometric vectors
		cameraLocation[2] = -cameraLocation[2]
		cameraTarget[2] = -cameraTarget[2]
		lightLocation[2] = -lightLocation[2]

		vertices = self.getUniqueVertices()
		if rotationAxis and rotationAngle:
			rotationMatrix = rotation_matrix(rotationAxis, rotationAngle)
			# Z axis must be flipped in vertex coords as well, before the transform
			vertexArgs = [ len(vertices) ] + [ list(np.dot(rotationMatrix, np.array([x,y,-z]))) for x,y,z in vertices ]
		else:
			vertexArgs = [ len(vertices) ] + [ [x,y,-z] for x,y,z in vertices ] # even if there is no rotation we must flip Z axis

		triangleIndices = self.getTriangleIndicesForUniqueVertices()
		faceArgs = [ len(triangleIndices) ] + list(map(list, triangleIndices))

		normales = np.zeros((len(vertices), 3))
		npvertices = np.array(vertices)
		for v0, v1, v2 in triangleIndices:
			triangleNormale = np.cross(npvertices[v1,:]-npvertices[v0,:], npvertices[v2,:]-npvertices[v0,:])
			triangleNormale /= np.linalg.norm(triangleNormale)
			triangleArea = np.dot(npvertices[v1,:]-npvertices[v0,:], npvertices[v2,:]-npvertices[v0,:])/2
			normales[v0,:] += triangleNormale*triangleArea
			normales[v1,:] += triangleNormale*triangleArea
			normales[v2,:] += triangleNormale*triangleArea
		normales /= np.linalg.norm(normales, axis=1, keepdims=True)

#		for i in range(len(vertices)):
#			print(f'Vertex {vertices[i]} has normale {normales[i]} (product {np.dot(vertices[i], normales[i])})')
#			print(f'{np.dot(vertices[i], normales[i])}')

		if rotationAxis and rotationAngle:
			rotationMatrix = rotation_matrix(rotationAxis, rotationAngle)
			# Z axis must be flipped in vertex coords as well, before the transform
			normaleArgs = [ len(vertices) ] + [ list(np.dot(rotationMatrix, np.array([x,y,-z]))) for x,y,z in [ normales[i,:] for i in range(len(vertices)) ] ]
		else:
			# even if there is no rotation we must flip Z axis
			normaleArgs = [ len(vertices) ] + [ [x,y,-z] for x,y,z in [ normales[i,:] for i in range(len(vertices)) ] ]

#		print('Rendering with camera at {} and light at {}'.format(str(cameraLocation), str(lightLocation)))

		asteroid = vpr.Mesh2(vpr.VertexVectors(*vertexArgs),
		                     vpr.NormalVectors(*normaleArgs),
		                     vpr.FaceIndices(*faceArgs),
		                     vpr.Texture(vpr.Pigment('color', 'rgb', [0.5, 0.5, 0.5]),
		                                 vpr.Normal('bumps', 0.75, 'scale', 0.0125),
		                                 vpr.Finish('phong', 0.1)
		                     )
		           )

#		                     vpr.Texture(vpr.Pigment('color', objectColor)))

		return vpr.Scene( vpr.Camera('location', cameraLocation, 'look_at', cameraTarget, 'sky', [0,0,-1]),
		                  objects = [ vpr.LightSource(lightLocation, 'color', lightColor),
		                              vpr.Background('color', backgroundColor),
		                              asteroid
		                  ],
		                  included = ["colors.inc", "textures.inc"]
#		                  ,defaults = [vpr.Finish( 'ambient', 0.0, 'diffuse', 0.0)]
		                  ,global_settings = [ 'ambient_light <0,0,0>' ]
		                )
Esempio n. 14
0
def plot_frames(beads, sim, ti, tf, savebase, colorid):
    """ plot frames within the specified time window"""

    ### define the color for the spheres

    print 'defining colors'
    if colorid == "id":
        sphere_rgbcolor = gen_colors_based_on_id(sim.nbeads, sim.npols,
                                                 beads.pid)
    elif colorid == "orient":
        sphere_rgbcolor = gen_colors_based_on_orient(sim.nbeads, sim.npols,
                                                     beads.ori)

    ### create povray settings

    print 'creating povray settings'
    sphere_radius, img_widthpx, img_heightpx, povray_includes, \
        povray_defaults, sun1, sun2, background, povray_cam, quality \
            = gen_img_settings_quality(sim.lx)

    zi = np.zeros((sim.nbeads), dtype=np.float32)

    ### set general plot properties

    os.system("mkdir -p " + savebase)
    savebase = data_separator.gen_folder_path(savebase, '_', sim.phaseparams)
    os.system("mkdir -p " + savebase)

    ### plot the frames

    for step in range(ti, tf):

        time = step * sim.dt
        print 'Step / Total : ', step, tf

        ### create povray items

        print 'generating povray item'
        particles = vapory.Object( \
            vapory.Union( \
                *[ vapory.Sphere([beads.xi[step, 0, j], beads.xi[step, 1, j],zi[j]], \
                    sphere_radius, vapory.Texture( \
                        vapory.Pigment('color', sphere_rgbcolor[j]), \
                            vapory.Finish('phong',1)) ) for j in range(0, sim.nbeads ) ] ) )

        ### generate povray objects

        print 'generating povray objects'
        povray_objects = [sun1, sun2, background, particles]
        ### create the scene
        scene = vapory.Scene(camera=povray_cam,
                             objects=povray_objects,
                             included=povray_includes,
                             defaults=povray_defaults)

        ### render image

        print 'rendering scene'
        savename = "pov-frame-" + "{0:05d}".format(int(step)) + ".png"
        scene.render(outfile=savename, width=img_widthpx, height=img_heightpx, \
            antialiasing=0.001, quality=quality, remove_temp=True)

        ### move the image to the correct destination

        os.system('mv ' + savename + ' ' + savebase)

    return
Esempio n. 15
0
def render_povray(scene,
                  filename='ipython',
                  width=600,
                  height=600,
                  antialiasing=0.01,
                  extra_opts={}):
    '''Render the scene with povray for publication.

    :param dict scene: The scene to render
    :param string filename: Output filename or 'ipython' to render in the notebook.
    :param int width: Width in pixels.
    :param int height: Height in pixels.
    :param dict extra_opts: Dictionary to merge/override with the passed scene.
    '''
    if not vapory_available:
        raise Exception("To render with povray, you need to have the vapory"
                        " package installed.")

    # Adding extra options
    scene = normalize_scene(scene)
    scene.update(extra_opts)

    # Camera target
    aspect = scene['camera']['aspect']
    up = np.dot(rmatrixquaternion(scene['camera']['quaternion']), [0, 1, 0])
    v_fov = scene['camera']['vfov'] / 180.0 * np.pi
    h_fov = 2.0 * np.arctan(np.tan(v_fov / 2.0) * aspect) / np.pi * 180
    # Setup camera position
    camera = vp.Camera('location', scene['camera']['location'], 'direction',
                       [0, 0, -1], 'sky', up, 'look_at',
                       scene['camera']['target'], 'angle', h_fov)

    global_settings = []
    # Setup global illumination
    if scene.get('radiosity', False):
        # Global Illumination
        radiosity = vp.Radiosity(
            'brightness',
            2.0,
            'count',
            100,
            'error_bound',
            0.15,
            'gray_threshold',
            0.0,
            'low_error_factor',
            0.2,
            'minimum_reuse',
            0.015,
            'nearest_count',
            10,
            'recursion_limit',
            1,  #Docs say 1 is enough
            'adc_bailout',
            0.01,
            'max_sample',
            0.5,
            'media off',
            'normal off',
            'always_sample',
            1,
            'pretrace_start',
            0.08,
            'pretrace_end',
            0.01)

        light_sources = []
        global_settings.append(radiosity)
    else:
        # Lights
        light_sources = [
            vp.LightSource(np.array([2, 4, -3]) * 1000, 'color', [1, 1, 1]),
            vp.LightSource(np.array([-2, -4, 3]) * 1000, 'color', [1, 1, 1]),
            vp.LightSource(np.array([-1, 2, 3]) * 1000, 'color', [1, 1, 1]),
            vp.LightSource(np.array([1, -2, -3]) * 1000, 'color', [1, 1, 1])
        ]

    # Background -- white for now
    background = vp.Background([1, 1, 1])

    # Things to display
    stuff = _generate_objects(scene['representations'])

    scene = vp.Scene(camera,
                     objects=light_sources + stuff + [background],
                     global_settings=global_settings)

    return scene.render(filename,
                        width=width,
                        height=height,
                        antialiasing=antialiasing)
Esempio n. 16
0
    def plot(self, state, iteration, temperature, field, save=False):
        """It is a function that creates the complete scene of the evolve of the
        states. It join the two array of the images. Also, it allows to put a text on
        the top of the scene.

        :param state:  It gets the states information from the simulation hdf file.
        :type state: list
        :param iteration:  It gets the number of iterations from the hdf file.
        :type iteration: int
        :param temperature: It gets the temperature information from the hdf file.
        :type temperature: float/list/dict
        :param field: It gets the field information from the hdf file.
        :type field: float/list/dict

        :return: It returns an array of the complete image.
        :rtype: array
        """
        camera = vapory.Camera(
            "location",
            self.location,
            "look_at",
            self.centroid,
            "sky",
            [0, 0, 1],
            "up",
            [0, 0, 1],
            "right",
            [0, 1, 0],
        )
        background = vapory.Background([1, 1, 1])
        light = vapory.LightSource(self.location, "color", [1, 1, 1])

        arrows = []
        for position, direction in zip(self.positions, state):
            color = self.get_rgb(direction, self.mode)
            arrows.append(PovrayArrow(position, direction, color))

        scene = vapory.Scene(camera, objects=[background, light, *arrows])
        scene_image = scene.render(width=self.size,
                                   height=self.size,
                                   antialiasing=0.1)

        image = PlotStates.join_images(self.colorbar_image, scene_image)

        if self.index == 1:
            title = "Initial state"
        else:
            title = f"T = {temperature:.2f}; H = {field:.2f}; iteration = {iteration}"

        draw = ImageDraw.Draw(image)
        draw.text((0.2 * image.width, 0), title, (0, 0, 0), font=self.font)

        if save:
            try:
                os.mkdir(self.output)
            except FileExistsError:
                pass

            image.save(f"{self.output}/figure_{self.index}.png")

        self.index += 1

        return numpy.array(image)
Esempio n. 17
0
    def scene(pack,
              cmap=None,
              rot=0,
              camera_height=0.7,
              camera_dist=1.5,
              angle=None,
              lightstrength=1.1,
              orthographic=False,
              pad=None,
              floater_color=(.6, .6, .6),
              bgcolor=(1, 1, 1),
              box_color=(.5, .5, .5),
              group_indexes=None,
              clip=False):
        """
        Render a 3D scene.

        Requires `vapory` package, which requires the `povray` binary.

        Parameters
        ----------
        cmap : a colormap
        box_color : Color to draw the box. 'None' => don't draw box.
        floater_color : Color for floaters. 'None' => same color as non-floaters (use cmap).
        group_indexes : a list of indexes for each "group" that should remain
                together on the same side of the box.
        clip : clip the spheres at the edge of the box.

        Returns
        -------
        scene : vapory.Scene, which can be rendered using its `.render()` method.
        """
        import vapory
        import numpy as np

        try:
            import matplotlib as mpl
            import matplotlib.cm as mcm
            vmin, vmax = min(pack.diameters), max(pack.diameters)
            sm = mcm.ScalarMappable(norm=mpl.colors.Normalize(vmin, vmax),
                                    cmap=cmap)
            cols = [sm.to_rgba(s) for s in pack.diameters]
        except ImportError:
            if not isinstance(cmap, list):
                raise ValueError(
                    "matplotlib could not be imported, and cmap not recognizeable as a list"
                )
            cols = list(cmap)
        except TypeError:
            if not isinstance(cmap, list):
                raise ValueError(
                    "matplotlib could not convert cmap to a colormap," +
                    " and cmap not recognizeable as a list")
            cols = list(cmap)

        if floater_color is not None:
            ix, _ = pack.backbone()
            ns, = np.nonzero(~ix)
            for n in ns:
                cols[n] = floater_color

        mod_add = .5 if not clip else 0.
        rs = np.remainder(pack.rs + mod_add, 1) - mod_add
        if group_indexes is not None:
            for ix in group_indexes:
                xs = pack.rs[ix, :]
                com = np.mean(xs, axis=0)
                comdiff = (np.remainder(com + mod_add, 1) - mod_add) - com
                rs[ix, :] = xs + comdiff

        if clip:
            spheres = []
            cube = vapory.Box((-.5, -.5, -.5), (.5, .5, .5))
            dxs = [-1., 0.]
            drs = np.array([(dx, dy, dz) for dx in dxs for dy in dxs
                            for dz in dxs])
            maxr = 0

            for xyz, s, col in zip(rs, pack.diameters, cols):
                for dr in drs:
                    r = dr + xyz
                    if np.any(abs(r) - s / 2. > .5):
                        # not in the box
                        continue
                    sphere = vapory.Sphere(r, s / 2.)
                    cutsphere = vapory.Intersection(
                        cube, sphere,
                        vapory.Texture(vapory.Pigment('color', col[:3])))
                    spheres.append(cutsphere)
                    if np.amax(r) > maxr:
                        maxr = np.amax(r)
        else:
            spheres = [
                vapory.Sphere(xyz, s / 2.,
                              vapory.Texture(vapory.Pigment('color', col[:3])))
                for xyz, s, col in zip(rs, pack.diameters, cols)
            ]
            maxr = np.amax(np.amax(np.abs(rs), axis=1) + pack.diameters / 2.)

        extent = (-.5, .5)
        corners = [
            np.array((x, y, z)) for x in extent for y in extent for z in extent
        ]
        pairs = [(c1, c2) for c1 in corners for c2 in corners
                 if np.allclose(np.sum((c1 - c2)**2), 1) and sum(c1 - c2) > 0]

        radius = 0.01
        cyls, caps = [], []
        if box_color is not None:
            col = vapory.Texture(vapory.Pigment('color', box_color))
            cyls = [vapory.Cylinder(c1, c2, 0.01, col) for c1, c2 in pairs]
            caps = [vapory.Sphere(c, radius, col) for c in corners]

        light_locs = [[8., 5., -3.], [-6., 6., -5.], [-6., -7., -4.],
                      [10., -5., 7.]]

        rotlocs = [[
            x * np.cos(rot) - z * np.sin(rot), y,
            z * np.cos(rot) + x * np.sin(rot)
        ] for x, y, z in light_locs]
        lights = [
            # vapory.LightSource( [2,3,5], 'color', [1,1,1] ),
            vapory.LightSource(loc, 'color', [lightstrength] * 3)
            for loc in rotlocs
        ]
        cloc = [
            np.cos(rot) * camera_dist, camera_dist * camera_height,
            np.sin(rot) * camera_dist
        ]
        # mag = sqrt(sum([d**2 for d in cloc]))
        # direction = [-v*2/mag for v in cloc]

        if angle is None:
            if pad is None:
                pad = max(pack.diameters)
            w = sqrt(2) * maxr + pad
            angle = float(np.arctan2(w, 2 * camera_dist)) * 2 * 180 / np.pi
        camera = vapory.Camera('location', cloc, 'look_at', [0, 0, 0], 'angle',
                               angle)
        # vapory.Camera('orthographic', 'location', cloc, 'direction',
        #               direction, 'up', [0,2,0], 'right', [2,0,0])

        return vapory.Scene(camera,
                            objects=(lights + spheres + cyls + caps +
                                     [vapory.Background("color", bgcolor)]))
Esempio n. 18
0
    def scene(pack,
              cmap=None,
              rot=0,
              camera_height=0.7,
              camera_dist=1.5,
              angle=None,
              lightstrength=1.1,
              orthographic=False,
              pad=None,
              floatercolor=(.6, .6, .6)):
        """
        Render a scene.
        
        Requires `vapory` package, which requires the `povray` binary.
        
        Parameters
        ----------
        cmap : a colormap 
        
        Returns
        -------
        scene : vapory.Scene, which can be rendered using its `.render()` method.
        """
        import vapory
        import numpy as np

        try:
            import matplotlib as mpl
            import matplotlib.cm as mcm
            vmin, vmax = min(pack.sigmas), max(pack.sigmas)
            sm = mcm.ScalarMappable(norm=mpl.colors.Normalize(vmin, vmax),
                                    cmap=cmap)
            cols = [sm.to_rgba(s) for s in pack.sigmas]
        except ImportError:
            if not isinstance(cmap, list):
                raise ValueError(
                    "matplotlib could not be imported, and cmap not recognizeable as a list"
                )
            cols = list(cmap)
        except TypeError:
            if not isinstance(cmap, list):
                raise ValueError(
                    "matplotlib could not convert cmap to a colormap, and cmap not recognizeable as a list"
                )
            cols = list(cmap)

        if floatercolor is not None:
            ix, _ = pack.backbone()
            ns, = np.nonzero(~ix)
            for n in ns:
                cols[n] = floatercolor
        rs = np.remainder(pack.rs + .5, 1) - .5
        spheres = [
            vapory.Sphere(xyz, s / 2.,
                          vapory.Texture(vapory.Pigment('color', col[:3])))
            for xyz, s, col in zip(rs, pack.sigmas, cols)
        ]

        extent = (-.5, .5)
        corners = [
            np.array((x, y, z)) for x in extent for y in extent for z in extent
        ]
        pairs = [(c1, c2) for c1 in corners for c2 in corners
                 if np.allclose(np.sum((c1 - c2)**2), 1) and sum(c1 - c2) > 0]

        radius = 0.01
        col = vapory.Texture(vapory.Pigment('color', [.5, .5, .5]))
        cyls = [vapory.Cylinder(c1, c2, 0.01, col) for c1, c2 in pairs]
        caps = [vapory.Sphere(c, radius, col) for c in corners]

        light_locs = [[8., 5., -3.], [-6., 6., -5.], [-6., -7., -4.],
                      [10., -5., 7.]]
        rotlocs = [[
            x * np.cos(rot) - z * np.sin(rot), y,
            z * np.cos(rot) + x * np.sin(rot)
        ] for x, y, z in light_locs]
        lights = [
            #vapory.LightSource( [2,3,5], 'color', [1,1,1] ),
            vapory.LightSource(loc, 'color', [lightstrength] * 3)
            for loc in rotlocs
        ]
        cloc = [
            np.cos(rot) * camera_dist, camera_dist * camera_height,
            np.sin(rot) * camera_dist
        ]
        mag = sqrt(sum([d**2 for d in cloc]))
        direction = [-v * 2 / mag for v in cloc]

        if angle is None:
            if pad is None: pad = max(pack.sigmas)
            w = sqrt(2) + pad
            angle = float(np.arctan2(w, 2 * camera_dist)) * 2 * 180 / np.pi
        camera = vapory.Camera('location', cloc, 'look_at', [0, 0, 0], 'angle',
                               angle)
        # vapory.Camera('orthographic', 'location', cloc, 'direction', direction, 'up', [0,2,0], 'right', [2,0,0])

        return vapory.Scene(camera,
                            objects=lights + spheres + cyls + caps +
                            [vapory.Background("color", [1, 1, 1])])