def _init_geometry(self, batch_win_size): """ Initializes: self.enc_in_len self.trim_ups_out self.trim_dec_out self.trim_dec_in """ # Calculate max length of mfcc encoder input and wav decoder input w = batch_win_size mfcc_vc = self.encoder.vc['beg'].parent beg_grcc_vc = self.decoder.vc['beg_grcc'] end_grcc_vc = self.decoder.vc['end_grcc'] end_ups_vc = self.decoder.vc['last_upsample'] end_enc_vc = self.encoder.vc['end'] do = vconv.GridRange((0, 100000), (0, w), 1) di = vconv.input_range(beg_grcc_vc, end_grcc_vc, do) ei = vconv.input_range(mfcc_vc, end_grcc_vc, do) mi = vconv.input_range(mfcc_vc.child, end_grcc_vc, do) eo = vconv.output_range(mfcc_vc, end_enc_vc, ei) uo = vconv.output_range(mfcc_vc, end_ups_vc, ei) # Needed for trimming various tensors self.enc_in_len = ei.sub_length() self.enc_in_mel_len = mi.sub_length() self.embed_len = eo.sub_length() self.dec_in_len = di.sub_length() self.trim_dec_in = torch.tensor([di.sub[0] - ei.sub[0], di.sub[1] - ei.sub[0]], dtype=torch.long) self.decoder.trim_ups_out = torch.tensor([di.sub[0] - uo.sub[0], di.sub[1] - uo.sub[0]], dtype=torch.long) self.trim_dec_out = torch.tensor([do.sub[0] - di.sub[0], do.sub[1] - di.sub[0]], dtype=torch.long)
def _init_geometry(self, batch_win_size): """ Initializes lengths and trimming needed to produce batch_win_size output self.enc_in_len - encoder input length (timesteps) self.dec_in_len - decoder input length (timesteps) self.trim_ups_out - trims decoder lc_dense before use self.trim_dec_out - trims wav_dec_input to wav_dec_output self.trim_dec_in - trims wav_enc_input to wav_dec_input The trimming vectors are needed because, due to striding geometry, output tensors cannot be produced in single-increment sizes, therefore must be over-produced in some cases. """ # Calculate max length of mfcc encoder input and wav decoder input w = batch_win_size mfcc_vc = self.encoder.vc['beg'].parent end_enc_vc = self.encoder.vc['end'] end_ups_vc = self.decoder.vc['last_upsample'] beg_grcc_vc = self.decoder.vc['beg_grcc'] end_grcc_vc = self.decoder.vc['end_grcc'] # naming: (d: decoder, e: encoder, u: upsample), (o: output, i:input) do = vconv.GridRange((0, 100000), (0, w), 1) di = vconv.input_range(beg_grcc_vc, end_grcc_vc, do) ei = vconv.input_range(mfcc_vc, end_grcc_vc, do) mi = vconv.input_range(mfcc_vc.child, end_grcc_vc, do) eo = vconv.output_range(mfcc_vc, end_enc_vc, ei) uo = vconv.output_range(mfcc_vc, end_ups_vc, ei) # Needed for trimming various tensors self.enc_in_len = ei.sub_length() self.enc_in_mel_len = mi.sub_length() # used by jitter_index self.embed_len = eo.sub_length() # sets size for wav_dec_in self.dec_in_len = di.sub_length() # trims wav_enc_input to wav_dec_input self.trim_dec_in = torch.tensor( [di.sub[0] - ei.sub[0], di.sub[1] - ei.sub[0]], dtype=torch.long) # needed by wavenet to trim upsampled local conditioning tensor self.decoder.trim_ups_out = torch.tensor( [di.sub[0] - uo.sub[0], di.sub[1] - uo.sub[0]], dtype=torch.long) # self.trim_dec_out = torch.tensor( [do.sub[0] - di.sub[0], do.sub[1] - di.sub[0]], dtype=torch.long)
def autoenc_test(vcs, in_len, slice_beg): enc = vcs['MFCC'], vcs['Upsampling_3'] dec = vcs['GRCC_0,0'], vcs['GRCC_1,9'] mfcc = vcs['MFCC'], vcs['MFCC'] autoenc = vcs['MFCC'], vcs['GRCC_1,9'] full_in = vconv.GridRange((0, in_len), (0, in_len), 1) full_mfcc = vconv.output_range(*mfcc, full_in) full_out = vconv.output_range(*autoenc, full_in) out_req = vconv.GridRange(full_out.full, (slice_beg, slice_beg + 100), 1) mid_req = vconv.input_range(*dec, out_req) in_req = vconv.input_range(*enc, mid_req) in_act = in_req mfcc_act = vconv.output_range(*mfcc, in_act) mid_act = vconv.output_range(*enc, in_act) # wav -> wav_mid wav_mid_sl = vconv.tensor_slice(in_act, mid_req.sub) # wav_mid_ten = wav_ten[wav_mid_sl] # lcond -> lcond_sl lcond_sl = vconv.tensor_slice(mid_act, mid_req.sub) # lcond_sl_ten = lcond_ten[lcond_sl] # wav -> wav_out # +1 since it is predicting the next step wav_out_sl = vconv.tensor_slice(in_act, out_req.sub) # wav_out_ten = wav_ten[sl_b+1:sl_e+1] mfcc_in_sl = vconv.tensor_slice(full_mfcc, mfcc_act.sub) print('{:10}: {}'.format('full_in', full_in)) print('{:10}: {}'.format('full_mfcc', full_mfcc)) print('{:10}: {}'.format('in_req', in_req)) print('{:10}: {}'.format('mfcc_req', mfcc_act)) print('{:10}: {}'.format('mid_req', mid_req)) print('{:10}: {}'.format('mid_act', mid_act)) print('{:10}: {}'.format('out_req', out_req)) print('{:10}: {}'.format('full_out', full_out)) print('wav_mid_sl: {} len: {}'.format(wav_mid_sl, wav_mid_sl[1] - wav_mid_sl[0])) print('mfcc_in_sl: {} len: {}'.format(mfcc_in_sl, mfcc_in_sl[1] - mfcc_in_sl[0])) print('lcond_sl: {} len: {}'.format(lcond_sl, lcond_sl[1] - lcond_sl[0])) print('wav_out_sl: {} len: {}'.format(wav_out_sl, wav_out_sl[1] - wav_out_sl[0]))
def _init_geometry(self, batch_win_size): """ Initializes: self.enc_in_len - timesteps of encoder input needed to produce batch_win_size decoder output timesteps self.trim_ups_out - offsets for trimming the upsampler output tensor self.trim_dec_out - offsets for trimming the decoder output self.trim_dec_in - offsets for trimming the decoder input The trimming vectors are needed because, due to striding geometry, output tensors cannot be produced in single-increment sizes, therefore must be over-produced in some cases. """ # Calculate max length of mfcc encoder input and wav decoder input w = batch_win_size mfcc_vc = self.encoder.vc['beg'].parent beg_grcc_vc = self.decoder.vc['beg_grcc'] end_grcc_vc = self.decoder.vc['end_grcc'] end_ups_vc = self.decoder.vc['last_upsample'] end_enc_vc = self.encoder.vc['end'] # naming: (d: decoder, e: encoder, u: upsample), (o: output, i:input) do = vconv.GridRange((0, 100000), (0, w), 1) di = vconv.input_range(beg_grcc_vc, end_grcc_vc, do) ei = vconv.input_range(mfcc_vc, end_grcc_vc, do) mi = vconv.input_range(mfcc_vc.child, end_grcc_vc, do) eo = vconv.output_range(mfcc_vc, end_enc_vc, ei) uo = vconv.output_range(mfcc_vc, end_ups_vc, ei) # Needed for trimming various tensors self.enc_in_len = ei.sub_length() self.enc_in_mel_len = mi.sub_length() self.embed_len = eo.sub_length() self.dec_in_len = di.sub_length() self.trim_dec_in = torch.tensor( [di.sub[0] - ei.sub[0], di.sub[1] - ei.sub[0]], dtype=torch.long) self.decoder.trim_ups_out = torch.tensor( [di.sub[0] - uo.sub[0], di.sub[1] - uo.sub[0]], dtype=torch.long) self.trim_dec_out = torch.tensor( [do.sub[0] - di.sub[0], do.sub[1] - di.sub[0]], dtype=torch.long)
def downsample_test(vc, x): try: y = vconv.output_range(vc, vc, x) except RuntimeError: return Result.NO_OUTPUT try: xn = vconv.input_range(vc, vc, y) except RuntimeError: return Result.NO_INPUT try: yt = vconv.output_range(vc, vc, xn) except RuntimeError: return Result.NO_OUTPUT try: xt = vconv.input_range(vc, vc, yt) except RuntimeError: return Result.NO_INPUT if xn != xt: return Result.UNEQUAL else: return Result.SUCCESS
def same_or_upsample_test(vc, x): try: y = vconv.output_range(vc, vc, x) except RuntimeError: return Result.NO_OUTPUT try: xn = vconv.input_range(vc, vc, y) except RuntimeError: return Result.NO_INPUT if xn != x: return Result.UNEQUAL else: return Result.SUCCESS
def sample(self, wav_onehot, lc_sparse, speaker_inds, jitter_index, n_rep): """ Generate n_rep samples, using lc_sparse and speaker_inds for local and global conditioning. wav_onehot: full length wav vector lc_sparse: full length local conditioning vector derived from full wav_onehot """ # initialize model geometry mfcc_vc = self.vc['beg'].parent up_vc = self.vc['pre_upsample'].child beg_grcc_vc = self.vc['beg_grcc'] end_vc = self.vc['end_grcc'] # calculate full output range wav_gr = vconv.GridRange((0, 1e12), (0, wav_onehot.size()[2]), 1) full_out_gr = vconv.output_range(mfcc_vc, end_vc, wav_gr) n_ts = full_out_gr.sub_length() # calculate starting input range for single timestep one_gr = vconv.GridRange((0, 1e12), (0, 1), 1) vconv.compute_inputs(end_vc, one_gr) # calculate starting position of wav wav_beg = int(beg_grcc_vc.input_gr.sub[0] - mfcc_vc.input_gr.sub[0]) # wav_end = int(beg_grcc_vc.input_gr.sub[1] - mfcc_vc.input_gr.sub[0]) wav_onehot = wav_onehot[:,:,wav_beg:] # !!! hack - I'm not sure why the int() cast is necessary n_init_ts = int(beg_grcc_vc.in_len()) lc_sparse = lc_sparse.repeat(n_rep, 1, 1) jitter_index = jitter_index.repeat(n_rep, 1) speaker_inds = speaker_inds.repeat(n_rep) # precalculate conditioning vector for all timesteps D1 = lc_sparse.size()[1] lc_jitter = torch.take(lc_sparse, jitter_index.unsqueeze(1).expand(-1, D1, -1)) lc_conv = self.lc_conv(lc_jitter) lc_dense = self.lc_upsample(lc_conv) cond = self.cond(lc_dense, speaker_inds) n_ts = cond.size()[2] # cond_loff, cond_roff = vconv.output_offsets(mfcc_vc, up_end_vc) # zero out start_pos = 26000 n_samples = 20000 end_pos = start_pos + n_samples # wav_onehot[...,n_init_ts:] = 0 wav_onehot = wav_onehot.repeat(n_rep, 1, 1) # wav_onehot[...,start_pos:end_pos] = 0 # assert cond.size()[2] == wav_onehot.size()[2] # loop through timesteps # inrange = torch.tensor((0, n_init_ts), dtype=torch.int32) inrange = torch.tensor((start_pos - n_init_ts, start_pos), dtype=torch.int32) # end_ind = torch.tensor([n_ts], dtype=torch.int32) end_ind = torch.tensor([end_pos], dtype=torch.int32) # inefficient - this recalculates intermediate activations for the # entire receptive fields, rather than just the advancing front while not torch.equal(inrange[1], end_ind[0]): # while inrange[1] != end_ind[0]: sig = self.base_layer(wav_onehot[:,:,inrange[0]:inrange[1]]) sig, skp_sum = self.conv_layers[0](sig, cond[:,:,inrange[0]:inrange[1]]) for layer in self.conv_layers[1:]: sig, skp = layer(sig, cond[:,:,inrange[0]:inrange[1]]) skp_sum += skp post1 = self.post1(self.relu(skp_sum)) quant = self.post2(self.relu(post1)) cat = dcat.OneHotCategorical(logits=quant.squeeze(2)) wav_onehot[1:,:,inrange[1]] = cat.sample()[1:,...] inrange += 1 if inrange[0] % 100 == 0: print(inrange, end_ind[0]) # convert to value format quant_range = wav_onehot.new(list(range(self.n_quant))) wav = torch.matmul(wav_onehot.permute(0,2,1), quant_range) torch.set_printoptions(threshold=100000) pad = 5 print('padding = {}'.format(pad)) print('original') print(wav[0,start_pos-pad:end_pos+pad]) print('synth') print(wav[1,start_pos-pad:end_pos+pad]) # print(wav[:,end_pos:end_pos + 10000]) print('synth range std: {}, baseline std: {}'.format( wav[:,start_pos:end_pos].std(), wav[:,end_pos:].std() )) return wav
for vc, x in input_gen(t): if vc.stride_ratio.numerator > 1: res = downsample_test(vc, x) else: res = same_or_upsample_test(vc, x) results[res] += 1 if c > 0 and c % t.report_freq == 0: print(results) c += 1 print('Finished') print('Results: {}'.format(results)) x = vconv.GridRange((0, 250000), (0, 250000), 1) y = vconv.output_range(vcs['MFCC'], vcs['GRCC_1,9'], x) xi = vconv.input_range(vcs['MFCC'], vcs['GRCC_1,9'], y) #print('x0: {}'.format(x)) #print('y0: {}'.format(y)) #print('xi: {}'.format(xi)) def autoenc_test(vcs, in_len, slice_beg): enc = vcs['MFCC'], vcs['Upsampling_3'] dec = vcs['GRCC_0,0'], vcs['GRCC_1,9'] mfcc = vcs['MFCC'], vcs['MFCC'] autoenc = vcs['MFCC'], vcs['GRCC_1,9'] full_in = vconv.GridRange((0, in_len), (0, in_len), 1) full_mfcc = vconv.output_range(*mfcc, full_in)