Esempio n. 1
0
    def arc_to(self, endpoint, center=None, start_slant=None, end_slant=None):
        """
        Draw an arc ending at the specified point, starting tangent to the
        current position and heading.
        """
        if points_equal(self._position, endpoint):
            return
        # Handle unspecified center.
        # We need to find the center of the arc, so we can find its radius. The
        # center of this arc is uniquely defined by the intersection of two
        # lines:
        # 1. The first line is perpendicular to the pen heading, passing
        #    through the pen position.
        # 2. The second line is the perpendicular bisector of the pen position
        #    and the target arc end point.
        v_pen = self._vector()
        v_perp = vec.perp(self._vector())
        v_chord = vec.vfrom(self._position, endpoint)
        if center is None:
            midpoint = vec.div(vec.add(self._position, endpoint), 2)
            v_bisector = vec.perp(v_chord)
            center = intersect_lines(
                self._position,
                vec.add(self._position, v_perp),
                midpoint,
                vec.add(midpoint, v_bisector),
            )

        # Determine true start heading. This may not be the same as the
        # original pen heading in some circumstances.
        assert not points_equal(center, self._position)
        v_radius_start = vec.vfrom(center, self._position)
        v_radius_perp = vec.perp(v_radius_start)
        if vec.dot(v_radius_perp, v_pen) < 0:
            v_radius_perp = vec.neg(v_radius_perp)
        start_heading = math.degrees(vec.heading(v_radius_perp))
        self.turn_to(start_heading)
        # Refresh v_pen and v_perp based on the new start heading.
        v_pen = self._vector()
        v_perp = vec.perp(self._vector())

        # Calculate the arc angle.
        # The arc angle is double the angle between the pen vector and the
        # chord vector. Arcing to the left is a positive angle, and arcing to
        # the right is a negative angle.
        arc_angle = 2 * math.degrees(vec.angle(v_pen, v_chord))
        radius = vec.mag(v_radius_start)
        # Check which side of v_pen the goes toward.
        if vec.dot(v_chord, v_perp) < 0:
            arc_angle = -arc_angle
            radius = -radius

        self._arc(
            center,
            radius,
            endpoint,
            arc_angle,
            start_slant,
            end_slant,
        )
Esempio n. 2
0
    def arc_left(
        self, arc_angle, radius=None, center=None, start_slant=None, end_slant=None,
    ):
        if (
            (radius is None and center is None)
            or (radius is not None and center is not None)
        ):
            raise TypeError('You must specify exactly one of center or radius.')

        arc_angle = Angle(arc_angle)
        # Create a radius vector, which is a vector from the arc center to the
        # current position. Subtract to find the center, then rotate the radius
        # vector to find the arc end point.
        if center is None:
            if arc_angle < 0:
                radius = -abs(radius)
            v_radius = vec.neg(vec.perp(self._vector(radius)))
            center = vec.sub(self._position, v_radius)
        elif radius is None:
            v_radius = vec.vfrom(center, self._position)
            radius = vec.mag(v_radius)
            if arc_angle < 0:
                radius = -radius

        endpoint = vec.add(center, vec.rotate(v_radius, arc_angle.rad))

        self._arc(
            center,
            radius,
            endpoint,
            arc_angle,
            start_slant=start_slant,
            end_slant=end_slant,
        )
Esempio n. 3
0
    def arc_left(
        self, arc_angle, radius=None, center=None, start_slant=None, end_slant=None,
    ):
        if (
            (radius is None and center is None) or
            (radius is not None and center is not None)
        ):
            raise TypeError('You must specify exactly one of center or radius.')

        arc_angle = Angle(arc_angle)
        # Create a radius vector, which is a vector from the arc center to the
        # current position. Subtract to find the center, then rotate the radius
        # vector to find the arc end point.
        if center is None:
            if arc_angle < 0:
                radius = -abs(radius)
            v_radius = vec.neg(vec.perp(self._vector(radius)))
            center = vec.sub(self._position, v_radius)
        elif radius is None:
            v_radius = vec.vfrom(center, self._position)
            radius = vec.mag(v_radius)
            if arc_angle < 0:
                radius = -radius

        endpoint = vec.add(center, vec.rotate(v_radius, arc_angle.rad))

        self._arc(
            center,
            radius,
            endpoint,
            arc_angle,
            start_slant=start_slant,
            end_slant=end_slant,
        )
Esempio n. 4
0
    def arc_to(self, endpoint, center=None, start_slant=None, end_slant=None):
        """
        Draw an arc ending at the specified point, starting tangent to the
        current position and heading.
        """
        if points_equal(self._position, endpoint):
            return
        # Handle unspecified center.
        # We need to find the center of the arc, so we can find its radius. The
        # center of this arc is uniquely defined by the intersection of two
        # lines:
        # 1. The first line is perpendicular to the pen heading, passing
        #    through the pen position.
        # 2. The second line is the perpendicular bisector of the pen position
        #    and the target arc end point.
        v_pen = self._vector()
        v_perp = vec.perp(self._vector())
        v_chord = vec.vfrom(self._position, endpoint)
        if center is None:
            midpoint = vec.div(vec.add(self._position, endpoint), 2)
            v_bisector = vec.perp(v_chord)
            center = intersect_lines(
                self._position,
                vec.add(self._position, v_perp),
                midpoint,
                vec.add(midpoint, v_bisector),
            )

        # Determine true start heading. This may not be the same as the
        # original pen heading in some circumstances.
        assert not points_equal(center, self._position)
        v_radius_start = vec.vfrom(center, self._position)
        v_radius_perp = vec.perp(v_radius_start)
        if vec.dot(v_radius_perp, v_pen) < 0:
            v_radius_perp = vec.neg(v_radius_perp)
        start_heading = math.degrees(vec.heading(v_radius_perp))
        self.turn_to(start_heading)
        # Refresh v_pen and v_perp based on the new start heading.
        v_pen = self._vector()
        v_perp = vec.perp(self._vector())

        # Calculate the arc angle.
        # The arc angle is double the angle between the pen vector and the
        # chord vector. Arcing to the left is a positive angle, and arcing to
        # the right is a negative angle.
        arc_angle = 2 * math.degrees(vec.angle(v_pen, v_chord))
        radius = vec.mag(v_radius_start)
        # Check which side of v_pen the goes toward.
        if vec.dot(v_chord, v_perp) < 0:
            arc_angle = -arc_angle
            radius = -radius

        self._arc(
            center,
            radius,
            endpoint,
            arc_angle,
            start_slant,
            end_slant,
        )
Esempio n. 5
0
    def draw(s, gs):
        starstep = 100
        # This would be nicer if it worked.  But, screw it for now.  More important things.
        # nearx = int(gs.camerax - (gs.camerax % starstep)) - (gs.screenW / 2) + starstep
        # farx = nearx + gs.screenW
        # neary = int(gs.cameray - (gs.cameray % starstep)) - (gs.screenH / 2) + starstep
        # fary = nearx + gs.screenH
        # for i in range(nearx, farx, starstep):
        #     for j in range(neary, fary, starstep):
        #         dist = vec.mag(vec.new(i,j))
        #         relativeDist = dist / gs.universeSize
        #         brightness = 255 - min(255, int(255 * relativeDist))
        #         sc = gs.screenCoords(vec.new(i, j))
        #         pygame.draw.circle(surf, pygame.Color(brightness,brightness,brightness), sc, 2)

        xoff = int(gs.camerax) % starstep
        yoff = int(gs.cameray) % starstep
        sprite = resource.getSprite('warpspark')
        for i in range(0, gs.screenW + starstep, starstep):
            for j in range(0, gs.screenH + starstep, starstep):
                dist = vec.mag(vec.new(gs.camerax, gs.cameray))
                relativeDist = dist / gs.universeSize
                brightness = 255 - min(255, int(255 * relativeDist))
                sprite.x = i - xoff
                sprite.y = j - yoff
                sprite.draw()
Esempio n. 6
0
    def rebound(self, *args, **kwargs):
        v_initial = self.velocity
        super(Player, self).rebound(*args, **kwargs)
        v_final = self.velocity

        # Apply damage based on the difference in momentum.
        v_diff = vec.sub(v_final, v_initial)
        self.damage += vec.mag(v_diff) * self.mass
Esempio n. 7
0
def collinear(*points):
    """
    Determine whether the given points are collinear in the order they were
    passed in.
    """
    # Find vectors between successive points, in a chain.
    vectors = []
    for a, b in pairwise(points):
        vectors.append(vec.vfrom(a, b))
    # Find the angles between successive vectors in the chain. Actually we skip
    # the inverse cosine calculation required to find angle, and just use ratio
    # instead. The ratio is the cosine of the angle between the vectors.
    for u, v in pairwise(vectors):
        ratio = vec.dot(u, v) / (vec.mag(u) * vec.mag(v))
        if ratio < 1.0 - epsilon:
            return False
    return True
Esempio n. 8
0
def collinear(*points):
    """
    Determine whether the given points are collinear in the order they were
    passed in.
    """
    # Find vectors between successive points, in a chain.
    vectors = []
    for a, b in pairwise(points):
        vectors.append(vec.vfrom(a, b))
    # Find the angles between successive vectors in the chain. Actually we skip
    # the inverse cosine calculation required to find angle, and just use ratio
    # instead. The ratio is the cosine of the angle between the vectors.
    for u, v in pairwise(vectors):
        ratio = vec.dot(u, v) / (vec.mag(u) * vec.mag(v))
        if ratio < 1.0 - epsilon:
            return False
    return True
Esempio n. 9
0
    def rebound(self, *args, **kwargs):
        v_initial = self.velocity
        super(Player, self).rebound(*args, **kwargs)
        v_final = self.velocity

        # Apply damage based on the difference in momentum.
        v_diff = vec.sub(v_final, v_initial)
        self.damage += vec.mag(v_diff) * self.mass
Esempio n. 10
0
 def text(self):
     lines = [
         '{:.0f} fps'.format(self.display.fps),
     ]
     for p in self.display.environment.players:
         lines.append('player {} speed: {:.1f}'.format(
             p.number + 1,
             vec.mag(p.velocity),
         ))
     return lines
Esempio n. 11
0
 def text(self):
     lines = [
         '{:.0f} fps'.format(self.display.fps),
     ]
     for p in self.display.environment.players:
         lines.append(
             'player {} speed: {:.1f}'.format(
                 p.number + 1,
                 vec.mag(p.velocity),
             )
         )
     return lines
Esempio n. 12
0
def intersect_circles(center1, radius1, center2, radius2):
    radius1 = abs(radius1)
    radius2 = abs(radius2)

    if radius2 > radius1:
        return intersect_circles(center2, radius2, center1, radius1)

    transverse = vec.vfrom(center1, center2)
    dist = vec.mag(transverse)

    # Check for identical or concentric circles. These will have either
    # no points in common or all points in common, and in either case, we
    # return an empty list.
    if points_equal(center1, center2):
        return []

    # Check for exterior or interior tangent.
    radius_sum = radius1 + radius2
    radius_difference = abs(radius1 - radius2)
    if (float_equal(dist, radius_sum) or float_equal(dist, radius_difference)):
        return [
            vec.add(center1, vec.norm(transverse, radius1)),
        ]

    # Check for non intersecting circles.
    if dist > radius_sum or dist < radius_difference:
        return []

    # If we've reached this point, we know that the two circles intersect
    # in two distinct points.
    # Reference:
    # http://mathworld.wolfram.com/Circle-CircleIntersection.html

    # Pretend that the circles are arranged along the x-axis.
    # Find the x-value of the intersection points, which is the same for both
    # points. Then find the chord length "a" between the two intersection
    # points, and use vector math to find the points.
    dist2 = vec.mag2(transverse)
    x = (dist2 - radius2**2 + radius1**2) / (2 * dist)
    a = ((1 / dist) * sqrt(
        (-dist + radius1 - radius2) * (-dist - radius1 + radius2) *
        (-dist + radius1 + radius2) * (dist + radius1 + radius2)))
    chord_middle = vec.add(
        center1,
        vec.norm(transverse, x),
    )
    perp = vec.perp(transverse)
    return [
        vec.add(chord_middle, vec.norm(perp, a / 2)),
        vec.add(chord_middle, vec.norm(perp, -a / 2)),
    ]
Esempio n. 13
0
def intersect_circle_line(center, radius, line_start, line_end):
    """
    Find the intersection of a circle with a line.
    """
    radius = abs(radius)

    # First check whether the line is too far away, or if we have a
    # single point of contact.
    # Reference:
    # http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
    r = vec.vfrom(center, line_start)
    v = vec.perp(vec.vfrom(line_start, line_end))
    d = vec.proj(r, v)
    dist = vec.mag(d)
    if float_equal(dist, radius):
        # Single intersection point, because the circle and line are tangent.
        point = vec.add(center, d)
        return [point]
    elif dist > radius:
        return []

    # Set up parametric equations for the line and the circle, and solve them.
    # Reference:
    # http://www.cs.cf.ac.uk/Dave/CM0268/PDF/circle_line_intersect_proof.pdf
    xc, yc = center
    x0, y0 = line_start
    x1, y1 = line_end
    line_x, line_y = (x1 - x0), (y1 - y0)  # f, g
    dx, dy = (x0 - xc), (y0 - yc)

    a = line_x**2 + line_y**2
    b = 2 * (line_x * dx + line_y * dy)
    c = dx**2 + dy**2 - radius**2
    t0, t1 = quadratic_formula(a, b, c)

    return [
        (
            x0 + line_x * t0,
            y0 + line_y * t0,
        ),
        (
            x0 + line_x * t1,
            y0 + line_y * t1,
        ),
    ]
Esempio n. 14
0
def intersect_circle_line(center, radius, line_start, line_end):
    """
    Find the intersection of a circle with a line.
    """
    radius = abs(radius)

    # First check whether the line is too far away, or if we have a
    # single point of contact.
    # Reference:
    # http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
    r = vec.vfrom(center, line_start)
    v = vec.perp(vec.vfrom(line_start, line_end))
    d = vec.proj(r, v)
    dist = vec.mag(d)
    if float_equal(dist, radius):
        # Single intersection point, because the circle and line are tangent.
        point = vec.add(center, d)
        return [point]
    elif dist > radius:
        return []

    # Set up parametric equations for the line and the circle, and solve them.
    # Reference:
    # http://www.cs.cf.ac.uk/Dave/CM0268/PDF/circle_line_intersect_proof.pdf
    xc, yc = center
    x0, y0 = line_start
    x1, y1 = line_end
    line_x, line_y = (x1 - x0), (y1 - y0)  # f, g
    dx, dy = (x0 - xc), (y0 - yc)

    a = line_x**2 + line_y**2
    b = 2 * (line_x * dx + line_y * dy)
    c = dx**2 + dy**2 - radius**2
    t0, t1 = quadratic_formula(a, b, c)

    return [
        (
            x0 + line_x * t0,
            y0 + line_y * t0,
        ),
        (
            x0 + line_x * t1,
            y0 + line_y * t1,
        ),
    ]
Esempio n. 15
0
	def to_omega(self, dt):
		m = vec.mag(self.v)
		
		#print self.s,s

		if m > 0.0:
			omega = 2.0 * math.asin(m) / dt * vec.normalize(self.v)
		else:
			omega = np.zeros(3)
			
		ver = False
		if ver:
			print 'dt   ',dt
			print 'm    ',m
			print 'r    ',self.s,self.v
			print 'omega',omega



		return omega
Esempio n. 16
0
    def genCaptureImage(s):
        """Builds a line sprite of the right length to go to the capturing planet."""
        # Some paranoid error checking
        if not s.parent:
            raise Exception(
                "Tried to generate capture image with nonexistant parent!")
        vecToParent = vec.sub(s.parent.loc, s.loc)
        distanceToParent = vec.mag(vecToParent)
        # It appears that we can blit image_data (software image data
        # in main memory) to a texture (hardware image data on the GPU)
        # but not any other way.
        ropeImage = resource.getImage('line2').get_image_data()
        img = pyglet.image.create(ropeImage.width,
                                  int(distanceToParent)).get_texture()
        img.anchor_x = int(img.width // 2)
        img.anchor_y = int(img.height // 2)

        # Now we have the image, we fill it up with the
        # capture-rope images.
        for i in range(0, int(distanceToParent), ropeImage.height):
            #print 'foo', i, img.height, ropeImage.height
            img.blit_into(ropeImage, 0, i, 0)

        s.captureSprite = pyglet.sprite.Sprite(img)
Esempio n. 17
0
    def draw(self, pen):
        #TODO: this is not very good.

        def scythe_cap(pen, end):
            start_heading = pen.heading

            switch = False
            if self.character.mirrored_x:
                switch = not switch
            if self.flipped:
                switch = not switch

            if not switch:
                top = end
                bottom = pen.position
            else:
                top = pen.position
                bottom = end

            # Trace the curves with a temporary pen.
            temp_pen = pen.copy()
            if not switch:
                arc = temp_pen.arc_right
            else:
                arc = temp_pen.arc_left

            temp_pen.move_to(top)
            temp_pen.turn_to(start_heading)
            outer_arcs = [
                (2.4, 1.6),
                (1.0, 2.8),
            ]
            outer_points = []
            for radius, distance in outer_arcs:
                circumference = radius * 2 * math.pi
                circle_ratio = distance / circumference
                angle = circle_ratio * 360
                arc(angle, radius)
                outer_points.append(temp_pen.position)
            outer_tip_angle = temp_pen.heading

            temp_pen.move_to(bottom)
            temp_pen.turn_to(start_heading)
            temp_pen.move_forward(0.5)
            inner_forward = temp_pen.position
            temp_pen.arc_to(outer_points[-1])
            inner_tip_angle = temp_pen.heading

            # Draw with the real pen.
            if not switch:
                pen.line_to(inner_forward)
                pen.arc_to(outer_points[-1])
                pen.turn_to(outer_tip_angle + 180)
                for p in reversed(outer_points[:-1]):
                    pen.arc_to(p)
                pen.arc_to(top)
            else:
                for p in outer_points:
                    pen.arc_to(p)
                pen.turn_to(inner_tip_angle + 180)
                pen.arc_to(inner_forward)
                pen.line_to(bottom)

        pen.line_to_y(BOTTOM + pen.mode.width / 2)
        pen.turn_to(0)

        # See how far forward we have to go to make the top of the stroke
        # zero-length.
        temp_pen = pen.copy(paper=True)
        temp_pen.line_forward(pen.mode.width, end_slant=90)
        seg = temp_pen.last_segment()
        extra_left = vec.mag(vec.vfrom(seg.a_left, seg.b_left))
        extra_right = vec.mag(vec.vfrom(seg.a_right, seg.b_right))
        extra = min(extra_left, extra_right)
        dist = pen.mode.width - extra
        pen.line_forward(dist, end_slant=90)
        pen.last_segment().end_cap = scythe_cap
Esempio n. 18
0
def intersect_circles(center1, radius1, center2, radius2):
    radius1 = abs(radius1)
    radius2 = abs(radius2)

    if radius2 > radius1:
        return intersect_circles(center2, radius2, center1, radius1)

    transverse = vec.vfrom(center1, center2)
    dist = vec.mag(transverse)

    # Check for identical or concentric circles. These will have either
    # no points in common or all points in common, and in either case, we
    # return an empty list.
    if points_equal(center1, center2):
        return []

    # Check for exterior or interior tangent.
    radius_sum = radius1 + radius2
    radius_difference = abs(radius1 - radius2)
    if (
        float_equal(dist, radius_sum) or
        float_equal(dist, radius_difference)
    ):
        return [
            vec.add(
                center1,
                vec.norm(transverse, radius1)
            ),
        ]

    # Check for non intersecting circles.
    if dist > radius_sum or dist < radius_difference:
        return []

    # If we've reached this point, we know that the two circles intersect
    # in two distinct points.
    # Reference:
    # http://mathworld.wolfram.com/Circle-CircleIntersection.html

    # Pretend that the circles are arranged along the x-axis.
    # Find the x-value of the intersection points, which is the same for both
    # points. Then find the chord length "a" between the two intersection
    # points, and use vector math to find the points.
    dist2 = vec.mag2(transverse)
    x = (dist2 - radius2**2 + radius1**2) / (2 * dist)
    a = (
        (1 / dist) *
        sqrt(
            (-dist + radius1 - radius2) *
            (-dist - radius1 + radius2) *
            (-dist + radius1 + radius2) *
            (dist + radius1 + radius2)
        )
    )
    chord_middle = vec.add(
        center1,
        vec.norm(transverse, x),
    )
    perp = vec.perp(transverse)
    return [
        vec.add(chord_middle, vec.norm(perp, a / 2)),
        vec.add(chord_middle, vec.norm(perp, -a / 2)),
    ]
Esempio n. 19
0
 def last_slant_width(self):
     seg = self.last_segment()
     return vec.mag(vec.vfrom(seg.b_left, seg.b_right))
Esempio n. 20
0
 def speed(self):
     return vec.mag(self.velocity)
Esempio n. 21
0
	def step(self, ti, ti_0):
		dt = self.c.t[ti] - self.c.t[ti-1]
		
		q = self.c.q[ti]
		q_ref = self.q_ref[ti]
		
		self.e1[ti] = q_ref * q.conj()
		
		q_ref_0 = self.q_ref[ti-1]
		q_ref_1 = self.q_ref[ti-0]
		
		# q_refd
		if ti_0 > 1:
			r = q_ref_1 * q_ref_0.conj()
			q_refd_1 = r.to_omega(dt)
			#print 'r',r.s,r.v
		else:
			q_refd_1 = np.zeros(3)		
		
		# clamp
		q_refd_1 = vec.clamparr(q_refd_1, -1.0, 1.0)
		self.q_refd[ti] = q_refd_1
			
		# q_refdd
		if ti_0 > 2:
			q_refdd_1 = (q_refd_1 - self.q_refd[ti-1]) / dt
			#print 'r',r.s,r.v
		else:
			q_refdd_1 = np.zeros(3)
		
		self.q_refdd[ti] = q_refdd_1
		
		# omega ref
		self.omega_ref[ti] = self.q_refd[ti]
		
		# omega error
		self.e2[ti] = self.omega_ref[ti] - self.c.omega[ti]
	
		# e1 mag d	
		if ti_0 > 0:
			self.e1_mag_d[ti] = (vec.mag(self.e1[ti].v) - vec.mag(self.e1[ti-1].v)) / dt
		
		# check objective
		if ti_0 > 0:
			if self.obj:
				if self.obj.mode == control.ObjMode.normal:
					if (self.e1_mag_d[ti] < 0.0) and (self.e1_mag_d[ti] > -0.001):
						if (2.0 * math.asin(vec.mag(self.e1[ti].v))) < self.obj.thresh:
							self.obj.flag_complete = True
		
				
		
		# extras
		
		def prin():
			print 'q_ref_1 ',q_ref_1.v
			print 'q_ref_0 ',q_ref_0.v
			print 'r       ',r.v
			print 'q_refd_n',q_refd_1

		
		if np.any(q_refd_1 > 1.0):
			prin()

		ver = False
		#ver = True
		if ver:		
			prin()
Esempio n. 22
0
	def step(self, ti):
		self.ti = ti

		dt = self.t[ti] - self.t[ti-1]
		
		# rotation
		omega  = self.omega[ti-1]
		q = self.q[ti-1]		

		tau = self.get_tau_rotor_body(ti-1)
				
		omegad = np.dot(self.Iinv, tau - np.cross(omega, np.dot(self.I, omega)))

		#theta  = self.theta[ti-1]
		#thetap = self.get_thetad(ti-1)
		
		omega_n = omega + omegad * dt
		
		#self.theta[ti] = theta + thetap * dt
		
		omega_n_magn = vec.mag(omega_n)
		
		#print omega_magn
		if omega_n_magn == 0.0:
			r = qt.Quat()
		else:
			omega_n_norm = omega_n / omega_n_magn
			r = qt.Quat(theta = omega_n_magn * dt, v = omega_n_norm)
		
		qn = r * q
		
		
		self.omega[ti] = omega_n
		self.q[ti] = qn

		ver = False
		if ver:		
			print 'tau    ',tau
			print 'omegad ',omegad
			print 'omega_n',omega_n
			print 'r      ',r.s,r.v

		# position
		f = self.get_force(ti-1)
		
		if any(np.isnan(f)):
			raise ValueError('f nan')
		
		x = self.x[ti-1]
		v = self.v[ti-1]
		
		a = f / self.m
		
		
		vn = v + a * dt
		xn = x + vn * dt
		
		self.x[ti] = xn 
		self.v[ti] = vn
		
		
		if any(np.isnan(vn)):
			raise ValueError('v nan')
		if any(np.isnan(xn)):
			raise ValueError('x nan')
Esempio n. 23
0
 def last_slant_width(self):
     seg = self.last_segment()
     return vec.mag(vec.vfrom(seg.b_left, seg.b_right))
Esempio n. 24
0
def dist(a, b):
    return vec.mag(vec.vfrom(a, b))
Esempio n. 25
0
 def speed(self):
     return vec.mag(self.velocity)