Esempio n. 1
0
def find_error(error_syndrome):
    comparison = (error_syndrome[0], error_syndrome[1], error_syndrome[2])
    try:
        column_map = {
            (zero, zero, one):
            list2vec([one, zero, zero, zero, zero, zero, zero]),
            (zero, one, zero):
            list2vec([zero, one, zero, zero, zero, zero, zero]),
            (zero, one, one):
            list2vec([zero, zero, one, zero, zero, zero, zero]),
            (one, zero, zero):
            list2vec([zero, zero, zero, one, zero, zero, zero]),
            (one, zero, one):
            list2vec([zero, zero, zero, zero, one, zero, zero]),
            (one, one, zero):
            list2vec([zero, zero, zero, zero, zero, one, zero]),
            (one, one, one):
            list2vec([zero, zero, zero, zero, zero, zero, one])
        }
        return column_map[comparison]
    except KeyError:
        return list2vec([zero, zero, zero, zero, zero, zero, zero])
import cancer_data
import vec
from vector import vecutil
from matrix import matutil
import math

test_ident = matutil.rowdict2mat({
    0: vecutil.list2vec([1, 0, 0]),
    1: vecutil.list2vec([0, 1, 0]),
    2: vecutil.list2vec([0, 0, 1]),
})
test_1 = vecutil.list2vec([-1, -1, -1])
test_2 = vecutil.list2vec([1, 1, 1])


def read_training_data():
    return cancer_data.read_training_data('inner_product/train.data')


def signum(u):
    """
  input: a Vec u
  output: the Vec v with the same domain as u such that
          +1 if u[d] >= 0
  v[d]= {
          -1 if u[d] < 0
  """
    return vec.Vec(u.D, {d: 1 if u[d] >= 0 else -1 for d in u.D})


assert (signum(vec.Vec({'A', 'B'}, {
Esempio n. 3
0
def find_error_matrix(S):
    return coldict2mat(
        {c: find_error(list2vec([S[r, c] for r in S.D[0]]))
         for c in S.D[1]})
Esempio n. 4
0
from matrix.matutil import listlist2mat, coldict2mat
from matrix.bitutil import mat2bits, bits2mat, str2bits, bits2str, noise
from vector.vecutil import list2vec
from GF2 import zero, one

G = listlist2mat([
    [one, zero, one, one],
    [one, one, zero, one],
    [zero, zero, zero, one],
    [one, one, one, zero],
    [zero, zero, one, zero],
    [zero, one, zero, zero],
    [one, zero, zero, zero],
])

message1 = list2vec([one, zero, zero, one])
encoded = G * message1

print("the encoding of the message [one, 0, 0, one] is ", encoded)


def extract_original(encoded):
    decoded = [encoded[6], encoded[5], encoded[4], encoded[2]]
    return decoded


print("\ndecoded %s" % extract_original(encoded))

# we know that the kernel is trivial because G's row space spans GF(1)^4, and therefore that
# G represents a one-to-one function, and therefore that it is invertible
Esempio n. 5
0
def get_column(m, colno):
    return G * list2vec([m[r, colno] for r in m.D[0]])
Esempio n. 6
0
 def adjust(v, multipliers):
     return vecutil.list2vec([v[d] * multipliers[d] for d in v.D])
    ('y2', 'x1'): -x1,
    ('y2', 'x2'): -x2,
    ('y2', 'x3'): -1
  })
  return [u, v]

w = Vec(D, {
  ('y1', 'x1'): 1
})

l0, l1 = make_equations(358, 36, 0, 0)
l4, l5 = make_equations(329, 597, 0, 1)
l2, l3 = make_equations(592, 157, 0, 1)
l6, l7 = make_equations(580, 483, 0, 1)

L = matutil.rowdict2mat({
  0: l0,
  1: l1,
  2: l2,
  3: l3,
  4: l4,
  5: l5,
  6: l6,
  7: l7,
  8: w,    
})

b = vecutil.list2vec([0, 0, 0, 0, 0, 0, 0, 0, 1])

print(solver.solve(L, b))
Esempio n. 8
0
def test_method_orthogonal(method):
    b = vecutil.list2vec([1, 1, 1])
    v1 = vecutil.list2vec([0, 2, 2])
    v2 = vecutil.list2vec([0, 1, -1])
    vlist = [v1, v2]
    return method(b, vlist)
Esempio n. 9
0

def orthonormalization(L):
    """
  input: a list L of linearly independent Vecs
  output: a list L* of len(L) orthonormal Vecs such that,
  for i = 1, ..., len(L), the first i Vecs of L*
  and the first i vecs of L span the same space
  """
    orthed_up = orthogonalize(L)
    norms = [vec_norm(v) for v in orthed_up]
    return [(1 / norms[i] * orthed_up[i]) for i in range(len(orthed_up))]


orth_test_list = [
    vecutil.list2vec([4, 3, 1, 2]),
    vecutil.list2vec([8, 9, -5, -5]),
    vecutil.list2vec([10, 1, -1, 5])
]

orth_test = orthonormalization(orth_test_list)
orth_test_rounded = [(vecutil.list2vec([round(o[d], 2) for d in o.D]))
                     for o in orth_test]
assert (orth_test_rounded == [
    Vec({0, 1, 2, 3}, {
        0: 0.73,
        1: 0.55,
        2: 0.18,
        3: 0.37
    }),
    Vec({0, 1, 2, 3}, {
Esempio n. 10
0
def test_method_non_orthogonal(method):
    first = vecutil.list2vec([1, 0])
    second = vecutil.list2vec([math.sqrt(2) / 2, math.sqrt(2) / 2])
    vlist = [first, second]
    b = vecutil.list2vec([1, 1])
    return method(b, vlist)
Esempio n. 11
0
# c) SAME DIMENSION SAME RANK
from vec import Vec
from dimension import independence
from vector import vecutil
from matrix import matutil


# 6.7.6
def my_is_independent(L):
    n = len(L)
    rank = independence.rank(L)
    return n == rank


a = [vecutil.list2vec([1, 2, 3]), vecutil.list2vec([2, 2, 2])]
assert (my_is_independent(a) == True)
assert (my_is_independent([
    vecutil.list2vec(v) for v in [[2, 4, 0], [8, 16, 4], [0, 0, 7]]
]) == False)


# 6.7.7
def my_rank(L):
    while not independence.is_independent(L):
        L.pop()
    return len(L)


my_rank_test = [
    vecutil.list2vec(v) for v in [[1, 2, 3], [4, 5, 6], [1.1, 1.1, 1.1]]
Esempio n. 12
0

def row_rearrange_algorithm(rowlist):
    col_label_list = sorted(rowlist[0].D, key=hash)
    new_rowlist = []
    rows_left = set(range(len(rowlist)))

    for c in col_label_list:
        rows_with_nonzero = [r for r in rows_left if rowlist[r][c] != 0]
        if rows_with_nonzero != []:
            pivot = rows_with_nonzero[0]
            new_rowlist.append(rowlist[pivot])
            for r in rows_with_nonzero[1:]:
                multiplier = rowlist[r][c] / rowlist[pivot][c]
                rowlist[r] -= multiplier * rowlist[pivot]
            rows_left.remove(pivot)

    return new_rowlist


def print_rowlist(rowlist):
    as_mat = matutil.rowdict2mat(rowlist)
    print("%s" % as_mat)


test = [[0, 2, 3, 4, 5], [0, 0, 0, 3, 2], [1, 2, 3, 4, 5], [0, 0, 0, 6, 7],
        [0, 0, 0, 9, 9]]
a = [vecutil.list2vec(v) for v in test]

print_rowlist(row_rearrange_algorithm(a))
Esempio n. 13
0
def create_random_vector(n):
  return list2vec([randGF2() for i in range(n)])
Esempio n. 14
0
from GF2 import one
from vector.vecutil import list2vec
from dimension import independence
from matrix import bitutil, matutil
import random

a0 = list2vec([one, one, 0, one, 0, one])
b0 = list2vec([one, one, 0, 0, 0, one])

def randGF2():
  return random.randint(0, 1) * one

def create_random_vector(n):
  return list2vec([randGF2() for i in range(n)])

def choose_secret_vector(s, t):
  """
  input: GF(2) field elements s and t (i.e bits)
  output: a random 6-vector u such that a0 * u = s and b0 * u = t
  """
  u = create_random_vector(6)
  while a0 * u != s and b0 * u != t:
    u = create_random_vector(6)
  
  return u
s = 0
t = one
u = choose_secret_vector(s, t)
print(u)

def generate_remaining_vectors():