Esempio n. 1
0
def sphere_intersection_point(theRay, theSphere):
    dotvector_of_raydir_sqr = vector_math.dot_vector(theRay.dir, theRay.dir)
    diffpoint_of_raypt_sphcen = vector_math.difference_point(
        theRay.pt, theSphere.center)
    dotvector_of_raydir_diffpoint = vector_math.dot_vector(
        diffpoint_of_raypt_sphcen, theRay.dir)
    dotvector_of_diffpoint_sqr = vector_math.dot_vector(
        diffpoint_of_raypt_sphcen, diffpoint_of_raypt_sphcen)
    A = dotvector_of_raydir_sqr  #(theRay.dir * theRay.dir)
    B = dotvector_of_raydir_diffpoint * 2  #(2 * (theRay.pt - theSphere.center) * theRay.dir)
    C = dotvector_of_diffpoint_sqr - theSphere.radius**2  #(((theRay.pt - theSphere.center) * (theRay.pt - theSphere.center)) - theSphere.radius ** 2)
    D = B**2 - 4 * A * C  #discriminant
    if D < 0:  #D < 0 means no real roots, thus sphere does not intersect with ray
        return 'None'
    elif D == 0:
        t = (-B + math.sqrt(D)) / (2 * A)
        if t < 0:
            return 'None'
        else:
            pointt = vector_math.translate_point(
                theRay.pt, vector_math.scale_vector(theRay.dir, t))
            return pointt
    else:
        t1 = (-B + math.sqrt(D)) / (2 * A)
        t2 = (-B - math.sqrt(D)) / (2 * A)
        if t1 >= 0 and t2 >= 0:
            pointt = vector_math.translate_point(
                theRay.pt, vector_math.scale_vector(theRay.dir, min(t1, t2)))
            return pointt
        elif t1 < 0 and t2 < 0:
            return 'None'
        elif t1 < 0 or t2 < 0:
            pointt = vector_math.translate_point(
                theRay.pt, vector_math.scale_vector(theRay.dir, max(t1, t2)))
            return pointt
Esempio n. 2
0
def sphere_intersection_point(ray,sphere):
   def point_t(t):
      return vector_math.translate_point(ray.pt,
                                         vector_math.scale_vector(ray.dir,t))
   diff_pt = vector_math.difference_point(ray.pt,sphere.center)
   a = vector_math.dot_vector(ray.dir, ray.dir)
   b = vector_math.dot_vector(vector_math.scale_vector(diff_pt,2),
                              ray.dir)
   c = vector_math.dot_vector(diff_pt,diff_pt) - sphere.radius ** 2
   disc = b ** 2 - 4 * a * c
   if disc < 0:
      return None
   elif disc == 0:
      t3 = (-b / (2 * a))
      if t3 >= 0:
         return point_t(t3)
      else:
         return None 
   else:
      disc_root = math.sqrt(disc)
      t1 = (-b + disc_root) / (2 * a)
      t2 = (-b - disc_root) / (2 * a)
      if t1 >= 0 and t2 >= 0:
         return point_t(min(t1,t2))
      elif t1 < 0 and t2 < 0:
         return None
      else:
         if t1 >= 0:
            return point_t(t1)
         elif t2 >= 0:
            return point_t(t2)
Esempio n. 3
0
def sphere_intersection_point(ray,sphere):
   a = vector_math.dot_vector(ray.dir, ray.dir)
   b = (2 * (vector_math.dot_vector(vector_math.difference_point(ray.pt, sphere.center),  ray.dir)))
   c = vector_math.dot_vector(vector_math.difference_point(ray.pt, sphere.center), (vector_math.difference_point(ray.pt, sphere.center))) - sphere.radius**2
   d = b**2 - 4*a*c 
   if d < 0: 
      return None 

   if d == 0:
      t1 = (-b + math.sqrt(b**2 - 4*a*c)) / (2*a)
      if t1 > 0: 
         x = (t1 * ray.dir.x) + ray.pt.x
         y = (t1 * ray.dir.y) + ray.pt.y
         z = (t1 * ray.dir.z) + ray.pt.z
         return data.Point(x,y,z)
      else: 
         return None     
   
   if d > 0:
      t1 = (-b + math.sqrt(b**2 - 4*a*c)) / (2*a)   
      t2 = (-b - math.sqrt(b**2 - 4*a*c)) / (2*a)
      if t2 < 0 and t1 < 0: 
         return None 
      elif t2 < 0: 
         x = (t1 * ray.dir.x) + ray.pt.x
         y = (t1 * ray.dir.y) + ray.pt.y
         z = (t1 * ray.dir.z) + ray.pt.z
         return data.Point(x,y,z) 
      else: 
         x = (t2 * ray.dir.x) + ray.pt.x
         y = (t2 * ray.dir.y) + ray.pt.y
         z = (t2 * ray.dir.z) + ray.pt.z
         return data.Point(x,y,z)
Esempio n. 4
0
def sphere_intersection_point(ray, sphere):
    def point_t(t):
        return vector_math.translate_point(
            ray.pt, vector_math.scale_vector(ray.dir, t))

    diff_pt = vector_math.difference_point(ray.pt, sphere.center)
    a = vector_math.dot_vector(ray.dir, ray.dir)
    b = vector_math.dot_vector(vector_math.scale_vector(diff_pt, 2), ray.dir)
    c = vector_math.dot_vector(diff_pt, diff_pt) - sphere.radius**2
    disc = b**2 - 4 * a * c
    if disc < 0:
        return None
    elif disc == 0:
        t3 = (-b / (2 * a))
        if t3 >= 0:
            return point_t(t3)
        else:
            return None
    else:
        disc_root = math.sqrt(disc)
        t1 = (-b + disc_root) / (2 * a)
        t2 = (-b - disc_root) / (2 * a)
        if t1 >= 0 and t2 >= 0:
            return point_t(min(t1, t2))
        elif t1 < 0 and t2 < 0:
            return None
        else:
            if t1 >= 0:
                return point_t(t1)
            elif t2 >= 0:
                return point_t(t2)
Esempio n. 5
0
def getSpecular(ray, intersection_list, light, point):
    closest = findClosestSphere(ray, intersection_list)
    csphere = closest[0]
    cpoint = closest[1]
    n_vector = collisions.sphere_normal_at_point(csphere, cpoint)
    scaled_vector = vector_math.scale_vector(n_vector, 0.01)
    p_e = vector_math.translate_point(cpoint, scaled_vector)
    light_vector = vector_math.vector_from_to(p_e, light.pt)
    L_dir = vector_math.normalize_vector(light_vector)
    light_dot_product = vector_math.dot_vector(n_vector, L_dir)
    #gets spec values
    n_scale = vector_math.scale_vector(n_vector, (2 * light_dot_product))
    reflection = vector_math.difference_vector(L_dir, n_scale)
    pe_eyevec = vector_math.normalize_vector(
        vector_math.difference_point(p_e, point))
    specularIntensity = vector_math.dot_vector(pe_eyevec, reflection)
    if specularIntensity > 0:
        sphere_spec = csphere.finish.specular
        sphere_rough = csphere.finish.roughness
        specCont_r = (light.color.r * sphere_spec) * (specularIntensity**(
            1 / float(sphere_rough)))
        specCont_g = (light.color.g * sphere_spec) * (specularIntensity**(
            1 / float(sphere_rough)))
        specCont_b = (light.color.b * sphere_spec) * (specularIntensity**(
            1 / float(sphere_rough)))
    else:
        specCont_r = 0
        specCont_g = 0
        specCont_b = 0
    return (specCont_r, specCont_g, specCont_b)
Esempio n. 6
0
def sphere_intersection_point(ray, sphere):
    a = vector_math.dot_vector(ray.dir, ray.dir)
    b = 2 * vector_math.dot_vector(
        ray.dir, vector_math.difference_point(ray.pt, sphere.center))
    c = vector_math.dot_vector(
        vector_math.difference_point(ray.pt, sphere.center),
        vector_math.difference_point(ray.pt, sphere.center)) - (sphere.radius**
                                                                2)

    d = discriminant(a, b, c)
    if d < 0:
        return None
    elif d == 0:
        t = solve_quadratic(a, b, c)
        if t > 0:
            return point_along_ray(ray, t)
        else:
            return None
    elif d > 0:
        t1 = solve_quadratic(a, b, c)
        t2 = solve_quadratic_2(a, b, c)
        if t1 > 0 and t2 > 0:
            return point_along_ray(ray, min(t1, t2))
        elif xor(t1 > 0, t2 > 0):
            return point_along_ray(ray, max(t1, t2))
        elif t1 == 0 and t2 == 0:
            return ray.pt
        else:
            return None
    else:
        return "something went wrong"
Esempio n. 7
0
def cast_ray(ray, sphere_list, color, light):
    """Find the rendered color at the nearest intersection point along ray"""
    nearest = closest_intersect(ray, sphere_list)
    if not nearest:
        # No intersection, return white
        return Color(1.0, 1.0, 1.0)
    point, sphere = nearest

    # Compute initial ambient colors
    r = sphere.color.r * sphere.finish.ambient * color.r
    g = sphere.color.g * sphere.finish.ambient * color.g
    b = sphere.color.b * sphere.finish.ambient * color.b

    # Calculate diffuse value
    normal = sphere_normal_at_point(sphere, point)
    to_light = normalize_vector(vector_from_to(point, light.pt))
    l_dot = dot_vector(normal, to_light)
    diffuse = sphere.finish.diffuse * l_dot
    if diffuse < 0:
        diffuse = 0
    else:
        # Check for shadows
        new_point = translate_point(point, scale_vector(normal, 0.01))
        light_ray = Ray(new_point, to_light)
        shadow_intersect = closest_intersect(light_ray, sphere_list)
        if (shadow_intersect and
                length_vector_sq(vector_from_to(new_point, shadow_intersect[0]))
                < length_vector_sq(vector_from_to(new_point, light.pt))):
            diffuse = 0

    # Add diffuse to existing colors
    r += sphere.color.r * diffuse * light.color.r
    g += sphere.color.g * diffuse * light.color.g
    b += sphere.color.b * diffuse * light.color.b

    # Compute specular intensity
    if diffuse > 0:
        reflection = difference_vector(to_light, scale_vector(normal, 2 * l_dot))
        intensity = dot_vector(reflection, normalize_vector(ray.dir))
        power = 1. / sphere.finish.roughness
        if intensity > 0:
            r += light.color.r * sphere.finish.specular * intensity ** power
            g += light.color.g * sphere.finish.specular * intensity ** power
            b += light.color.b * sphere.finish.specular * intensity ** power

    # Max out colors at 1.0
    if r > 1:
        r = 1
    if g > 1:
        g = 1
    if b > 1:
        b = 1

    return Color(r, g, b)
Esempio n. 8
0
 def test_get_diffuse_contribution(self):
     sphere = data.Sphere(data.Point(0, 0, 0), 1, data.Color(0.5, 0.7, 0.8), data.Finish(0.5, 0.5, 0.5, 0.05))
     light = data.Light(data.Point(0, 0, 100), data.Color(1.5, 1.2, 1.3))
     inter_point = data.Point(0, 0, 1)
     normal = collisions.sphere_normal_at_point(sphere, inter_point)
     inter_list = []
     off_pt = cast.find_pt_off_sphere(inter_point, normal)
     dir_vect = vector_math.normalize_vector(vector_math.vector_from_to(off_pt, light.pt))
     ray = data.Ray(off_pt, dir_vect)
     result = cast.get_diffuse_contribution(sphere, light, ray, inter_list, normal, dir_vect, off_pt)
     self.assertEqual(result[0], (vector_math.dot_vector(normal, dir_vect) * 1.5 * 0.5 * 0.5))
     self.assertEqual(result[1], (vector_math.dot_vector(normal, dir_vect) * 1.2 * 0.7 * 0.5))
     self.assertEqual(result[2], (vector_math.dot_vector(normal, dir_vect) * 1.3 * 0.8 * 0.5))
Esempio n. 9
0
def cast_ray(ray, sphere_list, amb, light, eye_point):
    result_color = data.Color(1.0, 1.0, 1.0)
    # test for closest sphere to the eye
    collision_tuple = find_closest_collision(ray, sphere_list)
    if collision_tuple:
        # some useful variables
        sphere_hit = collision_tuple[0]
        sphere_hit_point = collision_tuple[1]
        # basic color before manipulation
        result_r = sphere_hit.color.r * sphere_hit.finish.amb * amb.r
        result_g = sphere_hit.color.g * sphere_hit.finish.amb * amb.g
        result_b = sphere_hit.color.b * sphere_hit.finish.amb * amb.b
        # computing light intensity
        sphere_vector = vector_math.vector_from_to(sphere_hit.center, sphere_hit_point)
        sphere_normal = vector_math.normalize_vector(sphere_vector)

        scaled_normal = vector_math.scale_vector(sphere_normal, 0.01)
        hit_point = vector_math.translate_point(sphere_hit_point, scaled_normal)

        light_vector = vector_math.vector_from_to(hit_point, light.pt)
        light_normal = vector_math.normalize_vector(light_vector)

        light_scale = vector_math.dot_vector(sphere_normal, light_normal)

        if light_scale > 0:
            sphere_normal_ray = data.Ray(hit_point, light_normal)
            possible_obstruction = find_closest_collision(sphere_normal_ray, sphere_list)
            if possible_obstruction == None or distance(hit_point, possible_obstruction[1]) > distance(
                hit_point, light.pt
            ):
                result_r += sphere_hit.color.r * light_scale * light.color.r * sphere_hit.finish.diff
                result_g += sphere_hit.color.g * light_scale * light.color.g * sphere_hit.finish.diff
                result_b += sphere_hit.color.b * light_scale * light.color.b * sphere_hit.finish.diff

                # computing specular intensity
        tmp_vector = vector_math.scale_vector(sphere_normal, 2 * light_scale)
        reflection_vector = vector_math.difference_vector(light_normal, tmp_vector)

        eye_vector = vector_math.vector_from_to(eye_point, hit_point)
        eye_normal = vector_math.normalize_vector(eye_vector)

        spec_scale = vector_math.dot_vector(reflection_vector, eye_normal)

        if spec_scale > 0:

            result_r += light.color.r * sphere_hit.finish.spec * spec_scale ** (1 / float(sphere_hit.finish.rough))
            result_g += light.color.g * sphere_hit.finish.spec * spec_scale ** (1 / float(sphere_hit.finish.rough))
            result_b += light.color.b * sphere_hit.finish.spec * spec_scale ** (1 / float(sphere_hit.finish.rough))

        result_color = data.Color(result_r, result_g, result_b)
    return result_color
Esempio n. 10
0
  def test_dot_1(self):
    v1 = data.Vector(1,2,3)
    v2 = data.Vector(4,5,6)
    dot = vector_math.dot_vector(v1, v2)
    self.assertAlmostEqual(dot, 32)

    pass
Esempio n. 11
0
 def test_cast_ray_1(self):
     ray = data.Ray(data.Point(0, 10, 6), data.Vector(0, 0, -2))
     sphere_list = [
         data.Sphere(data.Point(0, 10, -2), 3, data.Color(0, 0.5, 1.0), data.Finish(0.5, 0.4, 0.5, 0.05)),
         data.Sphere(data.Point(0, 10, -20), 0.5, data.Color(0, 0.3, 0.2), data.Finish(0.5, 0.4, 0.5, 0.05)),
     ]
     ambient_color = data.Color(0.25, 0.5, 0.75)
     light = data.Light(data.Point(-100.0, 100.0, -100.0), data.Color(1.5, 1.5, 1.5))
     eye_position = data.Point(0, 0, -14)
     cr = cast.cast_ray(ray, sphere_list, ambient_color, light, eye_position)
     inter_point = collisions.sphere_intersection_point(ray, sphere_list[0])
     normal = collisions.sphere_normal_at_point(sphere_list[0], inter_point)
     off_pt = cast.find_pt_off_sphere(inter_point, normal)
     l_dir = vector_math.normalize_vector(vector_math.vector_from_to(off_pt, light.pt))
     l_dot_n = vector_math.dot_vector(normal, l_dir)
     diffuse_list = cast.determine_diffuse_contribution(
         sphere_list[0], off_pt, light, normal, sphere_list, l_dir, l_dot_n
     )
     spec_list = cast.determine_specular_contribution(
         l_dir, l_dot_n, normal, eye_position, off_pt, light.color, sphere_list[0].finish
     )
     self.assertEqual(
         cr,
         data.Color(
             0 + diffuse_list[0] + spec_list[0],
             0.125 + diffuse_list[1] + spec_list[1],
             0.375 + diffuse_list[2] + spec_list[2],
         ),
     )
Esempio n. 12
0
 def test_determine_diffuse_contribution(self):
     sphere = data.Sphere(data.Point(0, 0, 0), 1, data.Color(0.5, 0.7, 0.8), data.Finish(0.5, 0.5, 0.5, 0.05))
     light = data.Light(data.Point(0, 0, 100), data.Color(1.5, 1.2, 1.3))
     inter_point = data.Point(0, 0, 1)
     inter_list = [
         (
             data.Sphere(data.Point(0, 0, 102), 1, data.Color(0.5, 0.7, 0.8), data.Finish(0.5, 0.5, 0.5, 0.05)),
             data.Point(0, 0, 101),
         )
     ]
     normal = collisions.sphere_normal_at_point(sphere, inter_point)
     off_pt = cast.find_pt_off_sphere(inter_point, normal)
     dir_vect = vector_math.normalize_vector(vector_math.vector_from_to(off_pt, light.pt))
     ray = data.Ray(off_pt, dir_vect)
     sphere_list = []
     l_dir = vector_math.normalize_vector(vector_math.vector_from_to(off_pt, light.pt))
     l_dot_n = vector_math.dot_vector(normal, l_dir)
     result = cast.determine_diffuse_contribution(sphere, off_pt, light, normal, sphere_list, l_dir, l_dot_n)
     self.assertEqual(
         result[0], cast.get_diffuse_contribution(sphere, light, ray, inter_list, normal, dir_vect, off_pt)[0]
     )
     self.assertEqual(
         result[1], cast.get_diffuse_contribution(sphere, light, ray, inter_list, normal, dir_vect, off_pt)[1]
     )
     self.assertEqual(
         result[2], cast.get_diffuse_contribution(sphere, light, ray, inter_list, normal, dir_vect, off_pt)[2]
     )
Esempio n. 13
0
def determine_specular_contribution(l_dir,l_dot_n,normal,eye_position,
                                    off_pt,light,sphere_finish,ray,
                                    inter_list):
   reflection_vect = vector_math.difference_vector(l_dir,
                                 vector_math.scale_vector(normal,
                                                          2 * l_dot_n))
   v_dir = vector_math.normalize_vector(
                       vector_math.vector_from_to(eye_position,off_pt))
   spec_intensity = vector_math.dot_vector(reflection_vect,v_dir)
   def compute_spec(color_comp):
               return (color_comp * sphere_finish.specular *
                       (spec_intensity ** (1 / sphere_finish.roughness)))
   if spec_intensity > 0:
      r_comp = compute_spec(light.color.r)
      g_comp = compute_spec(light.color.g)
      b_comp = compute_spec(light.color.b)
      if inter_list == []:
         return [r_comp,g_comp,b_comp]
      else:
         dist_pt_to_light = distance(off_pt,light.pt)
         nearest_point = find_nearest(inter_list,ray)
         if distance(off_pt,nearest_point) < dist_pt_to_light:
            return [0,0,0]        
         else:
            return [r_comp,g_comp,b_comp]
   else:
      return [0,0,0]
Esempio n. 14
0
def determine_specular_contribution(l_dir, l_dot_n, normal, eye_position,
                                    off_pt, light, sphere_finish, ray,
                                    inter_list):
    reflection_vect = vector_math.difference_vector(
        l_dir, vector_math.scale_vector(normal, 2 * l_dot_n))
    v_dir = vector_math.normalize_vector(
        vector_math.vector_from_to(eye_position, off_pt))
    spec_intensity = vector_math.dot_vector(reflection_vect, v_dir)

    def compute_spec(color_comp):
        return (color_comp * sphere_finish.specular *
                (spec_intensity**(1 / sphere_finish.roughness)))

    if spec_intensity > 0:
        r_comp = compute_spec(light.color.r)
        g_comp = compute_spec(light.color.g)
        b_comp = compute_spec(light.color.b)
        if inter_list == []:
            return [r_comp, g_comp, b_comp]
        else:
            dist_pt_to_light = distance(off_pt, light.pt)
            nearest_point = find_nearest(inter_list, ray)
            if distance(off_pt, nearest_point) < dist_pt_to_light:
                return [0, 0, 0]
            else:
                return [r_comp, g_comp, b_comp]
    else:
        return [0, 0, 0]
Esempio n. 15
0
def point_light_same_side(point, sphere, light):
   normal = collisions.sphere_normal_at_point(sphere, point)
   pt_light_vec = vector_math.normalize_vector(
      vector_math.difference_point(light.pt, point))
   dot_product = vector_math.dot_vector(normal, pt_light_vec)
   if dot_product <= 0:
      return False
   else:
      return True
Esempio n. 16
0
def cast_ray(ray, sphere_list, ambient, light, point):
    a = collisions.find_intersection_points(sphere_list, ray)
    if a == []:
        return data.Color(1.0, 1.0, 1.0)
    sphere_look = a[0]
    for x in a:
        if distance(ray.pt, x[1]) < distance(ray.pt, sphere_look[1]):
            sphere_look = x

    red = sphere_look[0].color.r * sphere_look[0].finish.ambient * ambient.r
    green = sphere_look[0].color.g * sphere_look[0].finish.ambient * ambient.g
    blue = sphere_look[0].color.b * sphere_look[0].finish.ambient * ambient.b

    n = collisions.sphere_normal_at_point(sphere_look[0], sphere_look[1])
    pe = vector_math.translate_point(sphere_look[1],
                                     vector_math.scale_vector(n, .01))
    visible_ray = data.Ray(pe, vector_math.vector_from_to(pe, light.point))
    ldir = vector_math.normalize_vector(visible_ray.dir)
    visible = vector_math.dot_vector(ldir, n)
    n = collisions.sphere_normal_at_point(sphere_look[0], sphere_look[1])
    ldir_dot_n = vector_math.dot_vector(ldir, n)
    reflection_vector = vector_math.difference_vector(
        vector_math.scale_vector(n, ldir_dot_n * 2), ldir)
    vdir = vector_math.normalize_vector(vector_math.vector_from_to(point, pe))
    specular_intensity = vector_math.dot_vector(reflection_vector, vdir)
    if visible > 0:
        if collisions.find_intersection_points(sphere_list, visible_ray) == []:
            red += (visible * light.color.r * sphere_look[0].color.r *
                    sphere_look[0].finish.diffuse)
            green += (visible * light.color.g * sphere_look[0].color.g *
                      sphere_look[0].finish.diffuse)
            blue += (visible * light.color.b * sphere_look[0].color.b *
                     sphere_look[0].finish.diffuse)
    if specular_intensity > 0:
        spec_intensity_calc = specular_intensity**(
            1 / sphere_look[0].finish.roughness)
        red += light.color.r * sphere_look[
            0].finish.specular * spec_intensity_calc
        green += light.color.g * sphere_look[
            0].finish.specular * spec_intensity_calc
        blue += light.color.b * sphere_look[
            0].finish.specular * spec_intensity_calc
    return data.Color(red, green, blue)
Esempio n. 17
0
def sphere_intersection_point(ray, sphere):
    a = vm.dot_vector(ray.dir, ray.dir)
    b = vm.dot_vector(vm.scale_vector(vm.vector_from_to(sphere.center, ray.pt), 2), ray.dir)
    c = vm.dot_vector(vm.vector_from_to(sphere.center, ray.pt), vm.vector_from_to(sphere.center, ray.pt)) - sphere.radius ** 2
    x = vm.quadForm(a, b, c)


    def point_along_ray(ray, t):
        if t >= 0:
            x = ray.pt.x + ray.dir.x * t
            y = ray.pt.y + ray.dir.y * t
            z = ray.pt.z + ray.dir.z * t
            return data.Point(x, y, z)
        else:
            return None

    if x is None:
        return None
    if isinstance(x, list):
        intersections = []
        for i in x:
            intersections.append(point_along_ray(ray, i))

        distances = []
        for i in intersections:
            if i is not None:
                distances.append(vm.distForm(i, ray.pt))
            else:
                distances.append(None)


        if distances[0] is None:
            return intersections[1]
        if distances[1] is None:
            return intersections[0]
        if distances[0] < distances[1]:
            return intersections[0]
        else:
            return intersections[1]
    else:
        intersection = point_along_ray(ray, x)
        return intersection
Esempio n. 18
0
def sphere_intersection_point(ray, sphere):
    #define variables
    A = vector_math.dot_vector(ray.dir, ray.dir)
    B = vector_math.dot_vector(
        vector_math.scale_vector(
            (vector_math.difference_point(ray.pt, sphere.center)), 2), ray.dir)
    C = vector_math.dot_vector(
        vector_math.difference_point(ray.pt, sphere.center),
        vector_math.difference_point(ray.pt, sphere.center)) - sphere.radius**2
    discriminant = B**2 - 4 * A * C

    if discriminant < 0:
        return None

    #define t
    t = (-B + math.sqrt(discriminant)) / (2.0 * A)
    t_2 = (-B - math.sqrt(discriminant)) / (2.0 * A)
    point_t = vector_math.translate_point(ray.pt,
                                          vector_math.scale_vector(ray.dir, t))
    point_t2 = vector_math.translate_point(
        ray.pt, vector_math.scale_vector(ray.dir, t_2))

    #Cases

    if t >= 0 and t_2 >= 0:
        if t_2 > t:
            return point_t
        else:
            return point_t2

    elif t < 0 and t_2 < 0:
        return None

    elif (t < 0 and t_2 >= 0) or (t >= 0 and t_2 < 0):
        if t >= 0:
            return point_t
        else:
            return point_t2
    else:
        return None
Esempio n. 19
0
def get_diffuse_color(tu, light, s_list):
   pE = get_pe(tu)
   N = collisions.sphere_normal_at_point(tu[0], tu[1])
   lDir = vector_math.vector_from_to(pE, light.pt)
   lDir = vector_math.normalize_vector(lDir)
   lDirection = vector_math.dot_vector(N, lDir)
   sI = get_specular_intensity(lDir, lDirection, N, pE, light, tu[0])
   ray = data.Ray(pE, lDir)
   if lDirection <= 0 or collides_with_spheres(ray, s_list, pE, light):
      return data.Color(0,0,0) 
   dif = get_diffuse(lDirection, light, tu[0], tu[0].finish.diffuse)
   finalColor = data.Color(sI.r + dif.r, sI.g + dif.g, sI.b + dif.b)
   return finalColor 
Esempio n. 20
0
def comp(sphere_list,inter,light,sphere,int,eye_point):
	n = collisions.sphere_normal_at_point(sphere,int)
	scaled_normal = vector_math.scale_vector(n,.01)
	Pe = vector_math.translate_point(inter[0][1],scaled_normal)
	vr_light = vector_math.vector_from_to(Pe,light.pt)
	L_dir = vector_math.normalize_vector(vr_light)
	dot_product = vector_math.dot_vector(n,L_dir)
	reflection_vr = vector_math.difference_vector(L_dir,vector_math.scale_vector(n,(2 * dot_product)))
	V_dir = vector_math.normalize_vector(vector_math.vector_from_to(eye_point,Pe))
	intensity = vector_math.dot_vector(reflection_vr,V_dir)
	ray = data.Ray(Pe,L_dir)
	inter2 = collisions.find_intersection_points(sphere_list,ray)
	if dot_product>0 and inter2 == []:
		diff_r = sphere.color.r*sphere.finish.diffuse*dot_product*light.color.r
		diff_g = sphere.color.g*sphere.finish.diffuse*dot_product*light.color.g
		diff_b = sphere.color.b*sphere.finish.diffuse*dot_product*light.color.b
		spec_r = light.color.r*sphere.finish.specular*math.pow(intensity,(1/sphere.finish.roughness))
		spec_g = light.color.g*sphere.finish.specular*math.pow(intensity,(1/sphere.finish.roughness))
		spec_b = light.color.b*sphere.finish.specular*math.pow(intensity,(1/sphere.finish.roughness))
		return data.Color(diff_r,diff_g,diff_b),data.Color(spec_r,spec_g,spec_b)
	else :    
		return data.Color(0,0,0), data.Color(0,0,0)
Esempio n. 21
0
def get_diffuse_color(tu, light, s_list):
    pE = get_pe(tu)
    N = collisions.sphere_normal_at_point(tu[0], tu[1])
    lDir = vector_math.vector_from_to(pE, light.pt)
    lDir = vector_math.normalize_vector(lDir)
    lDirection = vector_math.dot_vector(N, lDir)
    sI = get_specular_intensity(lDir, lDirection, N, pE, light, tu[0])
    ray = data.Ray(pE, lDir)
    if lDirection <= 0 or collides_with_spheres(ray, s_list, pE, light):
        return data.Color(0, 0, 0)
    dif = get_diffuse(lDirection, light, tu[0], tu[0].finish.diffuse)
    finalColor = data.Color(sI.r + dif.r, sI.g + dif.g, sI.b + dif.b)
    return finalColor
Esempio n. 22
0
def find_specular_intensity(spherepair, light, eye_point, l_dot_n):
   light_dir = vector_math.normalize_vector(vector_math.difference_point(
      light.pt, spherepair[1]))
      
   sphere_normal = collisions.sphere_normal_at_point(spherepair[0], spherepair[1])
   
   reflection_vector = vector_math.difference_vector(light_dir,
      vector_math.scale_vector(sphere_normal, 2 * l_dot_n))
      
   view_dir = vector_math.normalize_vector(vector_math.difference_point(
      spherepair[1], eye_point))
      
   specular_intensity = vector_math.dot_vector(view_dir, reflection_vector)
   return specular_intensity
Esempio n. 23
0
def get_specular_intensity(lDir, lDirection, N, pE, light, sphere):
   reflection_vector = vector_math.difference_vector(lDir, vector_math.scale_vector(N, lDirection * 2)) 
   vDir = vector_math.vector_from_to(data.Point(0.0,0.0,-14.0), pE)
   vDir = vector_math.normalize_vector(vDir)
   intensity = vector_math.dot_vector(reflection_vector, vDir)
   if intensity > 0: 
      r = light.color.r * sphere.finish.specular * intensity**(1 / sphere.finish.roughness)
      g = light.color.g * sphere.finish.specular * intensity**(1 / sphere.finish.roughness)
      b = light.color.b * sphere.finish.specular * intensity**(1 / sphere.finish.roughness)
      color = data.Color(r,g,b)
   else: 
      color = data.Color(0,0,0)

   return color
Esempio n. 24
0
def sphere_intersection_point(ray, sphere):
    a = vector_math.dot_vector(ray.dir, ray.dir)
    b = (2 * (vector_math.dot_vector(
        vector_math.difference_point(ray.pt, sphere.center), ray.dir)))
    c = vector_math.dot_vector(
        vector_math.difference_point(ray.pt, sphere.center),
        (vector_math.difference_point(ray.pt,
                                      sphere.center))) - sphere.radius**2
    d = b**2 - 4 * a * c
    if d < 0:
        return None

    if d == 0:
        t1 = (-b + math.sqrt(b**2 - 4 * a * c)) / (2 * a)
        if t1 > 0:
            x = (t1 * ray.dir.x) + ray.pt.x
            y = (t1 * ray.dir.y) + ray.pt.y
            z = (t1 * ray.dir.z) + ray.pt.z
            return data.Point(x, y, z)
        else:
            return None

    if d > 0:
        t1 = (-b + math.sqrt(b**2 - 4 * a * c)) / (2 * a)
        t2 = (-b - math.sqrt(b**2 - 4 * a * c)) / (2 * a)
        if t2 < 0 and t1 < 0:
            return None
        elif t2 < 0:
            x = (t1 * ray.dir.x) + ray.pt.x
            y = (t1 * ray.dir.y) + ray.pt.y
            z = (t1 * ray.dir.z) + ray.pt.z
            return data.Point(x, y, z)
        else:
            x = (t2 * ray.dir.x) + ray.pt.x
            y = (t2 * ray.dir.y) + ray.pt.y
            z = (t2 * ray.dir.z) + ray.pt.z
            return data.Point(x, y, z)
Esempio n. 25
0
def cast_ray(ray,sphere_list,ambient_color,light,eye_position):
   inter_list = collisions.find_intersection_points(sphere_list,
                                                           ray)
   if inter_list != []:
      mindex = 0
      for i in range(1,len(inter_list)):
         if (distance(ray.pt,inter_list[i][1]) <       
             distance(ray.pt,inter_list[mindex][1])):
            mindex = i
      result_sphere = inter_list[mindex][0]
      inter_point = inter_list[mindex][1]
      sphere_color = result_sphere.color
      sphere_finish = result_sphere.finish
      sphere_normal = collisions.sphere_normal_at_point(result_sphere,
                                                        inter_point)
      pt_off_sphere = find_pt_off_sphere(inter_point,sphere_normal)
      l_dir = vector_math.normalize_vector(
                 vector_math.vector_from_to(pt_off_sphere,
                                            light.pt))
      l_dot_n = vector_math.dot_vector(sphere_normal,l_dir)
      ray_off_to_l = data.Ray(pt_off_sphere,l_dir)
      inter_list = collisions.find_intersection_points(sphere_list,ray_off_to_l)
      diffuse_list = determine_diffuse_contribution(result_sphere,
                                                    pt_off_sphere,
                                                    light,sphere_normal,
                                                    sphere_list,l_dir,
                                                    l_dot_n,ray_off_to_l,
                                                    inter_list)
      spec_intensity = determine_specular_contribution(l_dir,l_dot_n,
                                                       sphere_normal,
                                                       eye_position,
                                                       pt_off_sphere,
                                                       light,
                                                       result_sphere.finish,
                                                       ray_off_to_l,inter_list)

      result_r = ((sphere_color.r * sphere_finish.ambient * 
                   ambient_color.r) + diffuse_list[0] + spec_intensity[0])
      result_g = ((sphere_color.g * sphere_finish.ambient * 
                   ambient_color.g) + diffuse_list[1] + spec_intensity[1])
      result_b = ((sphere_color.b * sphere_finish.ambient * 
                   ambient_color.b) + diffuse_list[2] + spec_intensity[2])
      return data.Color(result_r,result_g,result_b)   
   else:
      return ambient_color
Esempio n. 26
0
def get_specular_intensity(lDir, lDirection, N, pE, light, sphere):
    reflection_vector = vector_math.difference_vector(
        lDir, vector_math.scale_vector(N, lDirection * 2))
    vDir = vector_math.vector_from_to(data.Point(0.0, 0.0, -14.0), pE)
    vDir = vector_math.normalize_vector(vDir)
    intensity = vector_math.dot_vector(reflection_vector, vDir)
    if intensity > 0:
        r = light.color.r * sphere.finish.specular * intensity**(
            1 / sphere.finish.roughness)
        g = light.color.g * sphere.finish.specular * intensity**(
            1 / sphere.finish.roughness)
        b = light.color.b * sphere.finish.specular * intensity**(
            1 / sphere.finish.roughness)
        color = data.Color(r, g, b)
    else:
        color = data.Color(0, 0, 0)

    return color
Esempio n. 27
0
def get_diffuse_contribution(sphere,light,ray,inter_list,normal,
                             l_dir,off_pt):
   dot = vector_math.dot_vector(normal,l_dir)
   diffuse = sphere.finish.diffuse
   def calculate_contribution(light_color_component,
                              sphere_color_component):
      return (dot*light_color_component*sphere_color_component*diffuse)   
   if inter_list == []:
      return [calculate_contribution(light.color.r,sphere.color.r),
              calculate_contribution(light.color.g,sphere.color.g),
              calculate_contribution(light.color.b,sphere.color.b)]
   else:           
      dist_pt_to_light = distance(off_pt,light.pt)
      nearest_point = find_nearest(inter_list,ray)
      if distance(off_pt,nearest_point) < dist_pt_to_light:
         return [0,0,0]
      return [calculate_contribution(light.color.r,sphere.color.r),
              calculate_contribution(light.color.g,sphere.color.g),
              calculate_contribution(light.color.b,sphere.color.b)]
Esempio n. 28
0
def cast_ray(ray, sphere_list, ambient_color, light, eye_position):
    inter_list = collisions.find_intersection_points(sphere_list, ray)
    if inter_list != []:
        mindex = 0
        for i in range(1, len(inter_list)):
            if (distance(ray.pt, inter_list[i][1]) < distance(
                    ray.pt, inter_list[mindex][1])):
                mindex = i
        result_sphere = inter_list[mindex][0]
        inter_point = inter_list[mindex][1]
        sphere_color = result_sphere.color
        sphere_finish = result_sphere.finish
        sphere_normal = collisions.sphere_normal_at_point(
            result_sphere, inter_point)
        pt_off_sphere = find_pt_off_sphere(inter_point, sphere_normal)
        l_dir = vector_math.normalize_vector(
            vector_math.vector_from_to(pt_off_sphere, light.pt))
        l_dot_n = vector_math.dot_vector(sphere_normal, l_dir)
        ray_off_to_l = data.Ray(pt_off_sphere, l_dir)
        inter_list = collisions.find_intersection_points(
            sphere_list, ray_off_to_l)
        diffuse_list = determine_diffuse_contribution(
            result_sphere, pt_off_sphere, light, sphere_normal, sphere_list,
            l_dir, l_dot_n, ray_off_to_l, inter_list)
        spec_intensity = determine_specular_contribution(
            l_dir, l_dot_n, sphere_normal, eye_position, pt_off_sphere, light,
            result_sphere.finish, ray_off_to_l, inter_list)

        result_r = (
            (sphere_color.r * sphere_finish.ambient * ambient_color.r) +
            diffuse_list[0] + spec_intensity[0])
        result_g = (
            (sphere_color.g * sphere_finish.ambient * ambient_color.g) +
            diffuse_list[1] + spec_intensity[1])
        result_b = (
            (sphere_color.b * sphere_finish.ambient * ambient_color.b) +
            diffuse_list[2] + spec_intensity[2])
        return data.Color(result_r, result_g, result_b)
    else:
        return ambient_color
Esempio n. 29
0
def getDiffuse(ray, intersection_list, sphere_list, light):
    closest = findClosestSphere(ray, intersection_list)
    csphere = closest[0]
    cpoint = closest[1]
    normalVec = collisions.sphere_normal_at_point(csphere, cpoint)
    scaled_vector = vector_math.scale_vector(normalVec, 0.01)
    p_e = vector_math.translate_point(cpoint, scaled_vector)
    light_vector = vector_math.vector_from_to(p_e, light.pt)
    L_dir = vector_math.normalize_vector(light_vector)
    ldotProduct = vector_math.dot_vector(normalVec, L_dir)
    light_ray = data.Ray(p_e, L_dir)
    light_intersections = collisions.find_intersection_points(
        sphere_list, light_ray)
    light_distance = vector_math.length_vector(light_vector)
    if_diffuse = True
    if ldotProduct > 0:
        if light_intersections != []:
            for spheres_and_points in light_intersections:
                point = spheres_and_points[1]
                difference_lengths = vector_math.length_vector(
                    vector_math.difference_point(point, p_e))
                if difference_lengths < light_distance:
                    if_diffuse = False
    else:
        if_diffuse = False
    if if_diffuse:
        lClr_r = light.color.r
        lClr_g = light.color.g
        lClr_b = light.color.b
        sp_r = csphere.color.r
        sp_g = csphere.color.g
        sp_b = csphere.color.b
        diff_r = ldotProduct * lClr_r * sp_r * csphere.finish.diffuse
        diff_g = ldotProduct * lClr_g * sp_g * csphere.finish.diffuse
        diff_b = ldotProduct * lClr_b * sp_b * csphere.finish.diffuse
    else:
        diff_r = 0
        diff_g = 0
        diff_b = 0
    return (diff_r, diff_g, diff_b)
Esempio n. 30
0
def get_diffuse_contribution(sphere, light, ray, inter_list, normal, l_dir,
                             off_pt):
    dot = vector_math.dot_vector(normal, l_dir)
    diffuse = sphere.finish.diffuse

    def calculate_contribution(light_color_component, sphere_color_component):
        return (dot * light_color_component * sphere_color_component * diffuse)

    if inter_list == []:
        return [
            calculate_contribution(light.color.r, sphere.color.r),
            calculate_contribution(light.color.g, sphere.color.g),
            calculate_contribution(light.color.b, sphere.color.b)
        ]
    else:
        dist_pt_to_light = distance(off_pt, light.pt)
        nearest_point = find_nearest(inter_list, ray)
        if distance(off_pt, nearest_point) < dist_pt_to_light:
            return [0, 0, 0]
        return [
            calculate_contribution(light.color.r, sphere.color.r),
            calculate_contribution(light.color.g, sphere.color.g),
            calculate_contribution(light.color.b, sphere.color.b)
        ]
Esempio n. 31
0
 def test_light_direction_2(self):
    v1 = data.Vector(1,2,3)
    v2 = data.Vector(5,6,7)
    product = vector_math.dot_vector(v1,v2)
    self.assertEqual(product, 38)
Esempio n. 32
0
import unittest
import data
import cast
import collisions
import vector_math

a = data.Sphere(data.Point(0.0, 0.0, 0.0), 2.0, data.Color(0.0, 0.0, 1.0),
                data.Finish(.2, .4, .5, .05))
t = (a, data.Point(0, 2, 0))
pe = cast.get_pe(t)
sphere = data.Sphere(data.Point(0, 0, 0), 2.0, data.Color(0, 0, 0),
                     data.Finish(.2, .4, .5, .05))
N = data.Vector(0, 0, 0)
V = data.Vector(5, 5, 5)
s = vector_math.dot_vector(N, V)
print s
print "%f %f %f" % (pe.x, pe.y, pe.z)
Esempio n. 33
0
 def test_light_direction_1(self):
    v1 = data.Vector(33,-2,1)
    v2 = data.Vector(1,3,38)
    product = vector_math.dot_vector(v1,v2)
    self.assertEqual(product, 65)
Esempio n. 34
0
 def test_dot_vector_1(self):
     v1 = data.Vector(1, 2, 3)
     v2 = data.Vector(2, 3, 4)
     self.assertAlmostEqual(vector_math.dot_vector(v1, v2), 20)
Esempio n. 35
0
def point_on_sphere(point, sphere):
    v = vector_math.vector_from_to(sphere.center, point)
    return vector_math.dot_vector(v, v) == sphere.radius**2
Esempio n. 36
0
 def test_dot_vector_2(self):
     v1 = data.Vector(0.0, 0.0, 0.0)
     v2 = data.Vector(1.0, 2.0, 3.0)
     dot_product = vector_math.dot_vector(v1, v2)
     self.assertAlmostEqual(dot_product, 0.0)
Esempio n. 37
0
 def test_dot_vector_1(self):
    vector1 = data.Vector(1, 20, 15)
    vector2 = data.Vector(2, 5, 3)
    product = 147
    self.assertEqual(vector_math.dot_vector(vector1, vector2), product)
Esempio n. 38
0
def light_direction(N, lDir): 
   return vector_math.dot_vector(N, lDir)
Esempio n. 39
0
 def test_dot_vector_2(self):
     v1 = data.Vector(0, -5, 2)
     v2 = data.Vector(2, 2, 5)
     self.assertAlmostEqual(vector_math.dot_vector(v1, v2), 0)
Esempio n. 40
0
 def test_dot_2(self):
   v1 = data.Vector(0, .5, 1.5)
   v2 = data.Vector(4, 6, 8)
   dot = vector_math.dot_vector(v1, v2)
   self.assertAlmostEqual(dot, 15)
   pass
Esempio n. 41
0
 def test_dot_vector(self):
     v_1 = data.Vector(1, 2, 3)
     v_2 = data.Vector(2, 3, 4)
     n_v = 20
     self.assertEqual(vector_math.dot_vector(v_1, v_2), n_v)
Esempio n. 42
0
 def test_dot_vector_2(self):
    vector3 = data.Vector(-15, 21, -9)
    vector4 = data.Vector(1, -6, -8)
    product = -69
    self.assertEqual(vector_math.dot_vector(vector3, vector4), product)
Esempio n. 43
0
 def test_dot_vector(self):
     dv = vector_math.dot_vector(data.Vector(1, 2, 3), data.Vector(1.5, 2.5, -2))
     self.assertAlmostEqual(dv, 0.5)
Esempio n. 44
0
 def test_dot_vector_again(self):
     dv = vector_math.dot_vector(data.Vector(-1, 2.2, 4), data.Vector(-3, 5.5, 4.4))
     self.assertAlmostEqual(dv, 32.7)
Esempio n. 45
0
import unittest
import data
import cast
import collisions
import vector_math

a = data.Sphere(data.Point(0.0,0.0,0.0), 2.0, data.Color(0.0,0.0,1.0), data.Finish(.2, .4, .5, .05))
t = (a, data.Point(0,2,0))
pe = cast.get_pe(t)
sphere = data.Sphere(data.Point(0,0,0), 2.0, data.Color(0,0,0), data.Finish(.2,.4,.5,.05))
N = data.Vector(0,0,0)
V = data.Vector(5,5,5)
s = vector_math.dot_vector(N,V)
print s
print "%f %f %f" % (pe.x,pe.y,pe.z)
Esempio n. 46
0
def cast_ray(ray, sphere_list, light = light_obj, ambient = data.Color(), eye_point = data.Point(0, 0, -14)):

    # intersections contains a list of tuples of spheres and points, ex: [(Sphere_1, Point_1), (Sphere_2, Point_2), ...]
    intersections = collisions.find_intersection_points(sphere_list, ray)

    if len(intersections) == 0:
        return data.Color(1.0, 1.0, 1.0)
    else:

        # initializing variable that stores the index and the distance of the tuple with the smallest distance
        index_of_nearest_sphere = 0
        distance_of_nearest_sphere = vector_math.distance_between(intersections[0][1], ray.pt)

        # loop through all_intersection_point and find the index of the tuple that contains the sphere & intersection with the smallest distance from ray's point
        for index in range(0, len(intersections)):
            distance_between_points = vector_math.distance_between(intersections[index][1], ray.pt)
            if distance_between_points < distance_of_nearest_sphere:
                index_of_nearest_sphere = index
                distance_of_nearest_sphere = distance_between_points

        # storing the sphere and intersection point in to variables for later usage
        nearest_sphere = intersections[index_of_nearest_sphere][0]
        nearest_intersection = intersections[index_of_nearest_sphere][1]


        # ==== color calculation based on ambient light, diffusion, light color and location ====
        # Impricision of floats can create collision issues with the sphere where the point lies when using the computed intersection
        # A point "pe" that is 0.01 above te intersection point will be used instead
        sphere_normal_vector = collisions.sphere_normal_at_point(nearest_sphere, nearest_intersection)
        pe_translate_direction_vector = vector_math.scale_vector(sphere_normal_vector, 0.01)
        # new point PE is now found
        pe = vector_math.translate_point(nearest_intersection, pe_translate_direction_vector)

        # === determine whether diffusivity is applicable -- determine if there are any obstruction of light vectors ===
        # comput vector from pe to light point then compute normalized vector from pe to to light point
        l_dir = vector_math.normalize_vector(vector_math.vector_from_to(pe, light.pt))
        n_dot_l_dir = vector_math.dot_vector(sphere_normal_vector, l_dir)

        #              === computing the specular_intensity ===
        reflection_vector = vector_math.difference_vector(l_dir ,vector_math.scale_vector(sphere_normal_vector, 2 * n_dot_l_dir))
        #creating the direction vector that points from eye_point to pe
        v_dir = vector_math.normalize_vector(vector_math.vector_from_to(eye_point, pe)) #Vdir
        # specular_intensity is defined to be the dot product of reflection_vector and the direction vector from eye_point to pe
        specular_intensity = vector_math.dot_vector(v_dir, reflection_vector)

        ambient_color = compute_ambient_color(nearest_sphere, ambient)

        if n_dot_l_dir > 0:
            ray_to_point = data.Ray(pe,l_dir)
            inter = collisions.find_intersection_points(sphere_list, ray_to_point)
            if len(inter) == 0:
                diffuse_color = compute_diffuse_color(n_dot_l_dir, light, intersections[index_of_nearest_sphere][0])
                if specular_intensity > 0:
                    specular_color = compute_specular_color(light, nearest_sphere, specular_intensity)
                    return add_color(add_color(specular_color, diffuse_color), ambient_color)
                else:
                    return add_color(diffuse_color, ambient_color)
            else:
                return ambient_color
        elif specular_intensity > 0:
            specular_color = compute_specular_color(light, nearest_sphere, specular_intensity)
            return add_color(specular_color, ambient_color)
        else:
            return ambient_color
Esempio n. 47
0
 def test_light_direction_1(self):
     v1 = data.Vector(33, -2, 1)
     v2 = data.Vector(1, 3, 38)
     product = vector_math.dot_vector(v1, v2)
     self.assertEqual(product, 65)
Esempio n. 48
0
def light_direction(N, lDir):
    return vector_math.dot_vector(N, lDir)
Esempio n. 49
0
 def test_light_direction_2(self):
     v1 = data.Vector(1, 2, 3)
     v2 = data.Vector(5, 6, 7)
     product = vector_math.dot_vector(v1, v2)
     self.assertEqual(product, 38)
Esempio n. 50
0
def cast_ray(ray, sphere_list, ambient_color, light, eye_point):
   reslist = collisions.find_intersection_points(sphere_list, ray)

   if reslist == []:
      return data.Color(1, 1, 1)

   closest_sphere_pair = find_closest_sphere(ray.pt, reslist)
   sphere_color = closest_sphere_pair[0].color
   
   l_dot_n = vector_math.dot_vector(
         collisions.sphere_normal_at_point(closest_sphere_pair[0],
            closest_sphere_pair[1]),
         vector_math.normalize_vector(vector_math.difference_point(light.pt,
            closest_sphere_pair[1])))

   specular_intensity = find_specular_intensity(closest_sphere_pair, light,
      eye_point, l_dot_n)
   
   ambient_component = find_ambient_component(closest_sphere_pair[0], ambient_color)
   
   
   
   if specular_intensity > 0 and light_hits_point(closest_sphere_pair, sphere_list, light):
      diffuse_component = find_diffuse_component(l_dot_n, light,
         closest_sphere_pair[0])
      specular_component = find_specular_component(light, closest_sphere_pair[0],
         specular_intensity)
      
      newr = specular_component.r + diffuse_component.r + ambient_component.r
      newg = specular_component.g + diffuse_component.g + ambient_component.g
      newb = specular_component.b + diffuse_component.b + ambient_component.b
      
      
      pixelcolor = data.Color(newr, newg, newb)
      pixelcolor = fix_specular_color(pixelcolor, ambient_component, diffuse_component)
      
      
   
   elif light_hits_point(closest_sphere_pair, sphere_list, light):
      diffuse_component = find_diffuse_component(l_dot_n, light,
         closest_sphere_pair[0])
      
      newr = diffuse_component.r + ambient_component.r
      newg = diffuse_component.g + ambient_component.g
      newb = diffuse_component.b + ambient_component.b
   
      pixelcolor = data.Color(newr, newg, newb)
      pixelcolor = fix_color_issues(pixelcolor, ambient_component)  
      # if color is past max/min, sets it to the max/min
      
   else: # light doesn't hit ray
      newr = ambient_component.r
      newg = ambient_component.g
      newb = ambient_component.b
      
      pixelcolor = data.Color(newr, newg, newb)
      pixelcolor = fix_color_issues(pixelcolor, ambient_component)
   
   
   
   return pixelcolor