Esempio n. 1
0
            grant_class_base, grant_class_means, grant_class_medians,
            grant_class_ffracs
        ],
        prefixes=['grant_', 'grant_', 'grant_', 'grant_', 'grant_'],
        postfixes=['', '_mean', '_median', '_ffrac'])
    grant_class_info['grant_class_number'] = grant_class_info.index
    grant_class_info['grant_class_size'] = grant_class_size

    # merge both levels
    datf_class = firm_class_info.join(grant_class_info).join(trans_class_means)

if run_flags[5]:
    print('Aggregate industry stats')

    # generate target values
    targ_model = vt.Bundle()
    targ_model['median_markup'] = firm_totals['markup'].median()
    targ_model['median_profit'] = firm_totals['profit'].median()
    targ_model['mean_markup'] = firm_totals['markup'].mean() - 1.0
    targ_model['mean_profit'] = firm_totals['profit'].mean()
    targ_model['agg_markup'] = firm_totals['revenue'].sum(
    ) / firm_totals['cogs'].sum() - 1.0
    targ_model['agg_profit'] = firm_totals['income'].sum(
    ) / firm_totals['cost'].sum()
    targ_model['entry_rate_5year'] = firm_totals['entered'].mean()
    targ_model['entrant_stock_frac'] = firm_totals['stock_end'][
        firm_totals['entered']].sum() / firm_totals['stock_end'].sum()
    targ_model['internal_cite_frac'] = (firm_totals['n_self_cited'] >
                                        0.0 * firm_totals['n_cited']).mean()
    targ_model['ind_ptrans_mean'] = datf_class['grant_pos_trans_mean'].mean()
    targ_model['ind_ptrans_std'] = datf_class['grant_pos_trans_mean'].std()
Esempio n. 2
0
# astro params
N = 2**8  # number of particles
M = 1  # sol masses
dt = 0.01  # years
crad = 1e-1  # AU

# scale
L = 1.496e11  # length scale (1 AU)
K = 1.989e30  # mass scale (1 sol mass)
T = 3.154e8  # time step (1 year)

# units
G = G0 * (1 / L**3) * (K) * (T**2)

# state
st = vt.Bundle()

# initialize
st.mas = (1e24 / K) * np.exp(2 * np.random.rand(N) - 1)
st.posx = (1e13 / L) * np.random.randn(N)
st.posy = (1e13 / L) * np.random.randn(N)
rad = np.sqrt(st.posx**2 + st.posy**2)
spd = np.sqrt(G * M / rad)
st.velx = 0.7 * (st.posy / rad) * spd
st.vely = -0.7 * (st.posx / rad) * spd

# perturb
st.velx += 1 * (2 * np.random.rand(N) - 1)
st.vely += 1 * (2 * np.random.rand(N) - 1)

# the star
Esempio n. 3
0
 def load_policy(m, pol):
     m.pol = vt.Bundle(file_or_dict(pol))
Esempio n. 4
0
 def load_eqvars(m, var):
     m.var = vt.Bundle(file_or_dict(var))
Esempio n. 5
0
 def load_params(m, par):
     m.par = vt.Bundle(file_or_dict(par))
Esempio n. 6
0
 def load_algpar(m, alg):
     m.alg = vt.Bundle(file_or_dict(alg))
Esempio n. 7
0
def file_or_dict(fod):
    return vt.Bundle(load_json(fod)) if type(fod) is str else fod