Esempio n. 1
0
    [bc.apply(A1, b1) for bc in bcu]
    solve(A1, u1.vector(), b1, "bicgstab", "default")

    # Pressure correction
    b2 = assemble(L2)
    [bc.apply(A2, b2) for bc in bcp]
    [bc.apply(p1.vector()) for bc in bcp]
    solve(A2, p1.vector(), b2, "bicgstab", prec)

    # Velocity correction
    b3 = assemble(L3)
    [bc.apply(A3, b3) for bc in bcu]
    solve(A3, u1.vector(), b3, "bicgstab", "default")

    # Move to next time step
    u0.assign(u1)
    t += dt

    # Plot solution
    plot(
        u1,
        mode='mesh and arrows',
        text="Velocity of fluid",
        cmap='jet',
        scale=0.3,  # unit conversion factor
        scalarbar=False,
        interactive=False)
    pb.print()

plot()
Esempio n. 2
0
def awefem(mesh, t, source_loc=None):

    # Function space
    V = FunctionSpace(mesh, "Lagrange", 1)

    # Boundary condition
    bc = DirichletBC(V, Constant(0), "on_boundary")

    # Trial and test functions
    u = TrialFunction(V)
    v = TestFunction(V)

    # Discretization
    c = 6
    dt = t[1] - t[0]
    u0 = Function(V)  # u0 = uN-1
    u1 = Function(V)  # u1 = uN1

    # Variational formulation
    F = (u - 2 * u1 + u0) * v * dx + (dt * c) ** 2 * dot(
        grad(u + 2 * u1 + u0) / 4, grad(v) ) * dx
    a, L = lhs(F), rhs(F)

    # Solver
    A, b = assemble_system(a, L)
    solver = LUSolver(A, "mumps")
    solver.parameters["symmetric"] = True
    bc.apply(A, b)

    # Solution
    u = Function(V)  # uN+1

    # Source
    if source_loc is None:
        mesh_center = np.mean(mesh.coordinates(), axis=0)
        source_loc = Point(mesh_center)
    else:
        source_loc = Point(source_loc)

    # Time stepping
    printc('\bomb Hit F1 to interrupt.', c='yellow')
    pb = ProgressBar(0, len(t))
    for i, t_ in enumerate(t[1:]):
        pb.print()
        b = assemble(L)
        delta = PointSource(V, source_loc, ricker_source(t_) * dt**2)
        delta.apply(b)
        solver.solve(u.vector(), b)

        u0.assign(u1)
        u1.assign(u)

        if t_>0.03:
            plot(u,
                 warpZfactor=20, # set elevation along z
                 vmin=.0,     # sets a minimum to the color scale
                 vmax=0.003,
                 cmap='rainbow', # the color map style
                 alpha=1,        # transparency of the mesh
                 lw=0.1,         # linewidth of mesh
                 scalarbar=None,
                 #lighting='plastic',
                 #elevation=-.3,
                 interactive=0)  # continue execution

    interactive()
Esempio n. 3
0
    # Read velocity from file
    timeseries_w.retrieve(w.vector(), t)

    # Solve variational problem for time step
    solve(F == 0, u)

    _u_1, _u_2, _u_3 = u.split()

    # Update previous solution
    u_n.assign(u)

    # Plot solution
    plot(_u_3, at=0,  # draw on renderer nr.0
    	 shape=(2,1), # two rows, one column
    	 size='fullscreen',
         cmap='bone',
         scalarbar=False,
         axes=0,
         zoom=2,
         interactive=False)

    plot(_u_2, at=1,
         cmap='bone',
         zoom=2,
         scalarbar=False,
         interactive=False)

    pb.print(t)

plot()