Esempio n. 1
0
def create_multiple_pointers_2():
    """
    Uses the dataframe built in apply function.
    This is faster and should be used for large datasets.
    """
    airports = vds.airports()
    airports = airports[:25]
    map_airports_2 = folium.Map(location=[38, -98], zoom_start=4)
    airports.apply(lambda row: folium.Marker(location=[row['latitude'], row['longitude']], popup=row['name'])
                   .add_to(map_airports_2), axis=1)

    return map_airports_2
Esempio n. 2
0
def create_multiple_pointers_1():
    # fetch data using vega_datasets
    airports = vds.airports()
    airports = airports[:25]

    # create map
    map_airports = folium.Map(location=[38, -98], zoom_start=4)
    for (index, row) in airports.iterrows():
        try:
            folium.Marker(location=[row.loc['latitude'], row.loc['longitude']], popup=row.loc['name'] + '' + row.loc['city']
                                                                                      + '' + row.loc['state'],
                      tooltip='click!').add_to(map_airports)
        except Exception:
            print("ups")

    return map_airports
Esempio n. 3
0
marker_cluster = MarkerCluster(markers=(marker6, marker7, marker8, marker9))

m.add_layer(marker_cluster);
# display_map
m

# In[12]
# Multiple Marker

from ipyleaflet import Map, Marker
# install vega_datasets first from python.org python package index
from vega_datasets import data

# airports dataframe using vega_datasets
airports = data.airports()
airports = airports[:25]

# create map
airports_map = Map(center=(-6.1753942, 106.827183), zoom=8)

# plot airport locations
for (index, row) in airports.iterrows():
    marker = Marker(location=[row.loc['latitude'], row.loc['longitude']],
                    title=row.loc['name'] + ' ' + row.loc['city'] + ' ' + row.loc['state'])
    airports_map.add_layer(marker)

# display map
airports_map

# In[14]
# st.bar_chart()

# *** SCATTER PLOT ***
# example using altair
cars = vds.cars()
st.write(cars.head())
scatter = alt.Chart(cars).mark_circle().encode(
    x='Weight_in_lbs', y='Miles_per_Gallon').interactive()
st.altair_chart(scatter)

# *** OTHER CHARTS AND PLOTS ***
# streamlit can display a number of other charts, images, etc.

# *** MAP ***
st.title('Map')
airports = vds.airports()[['latitude', 'longitude']][0:100]
st.map(airports)

# *** SLIDER ***
st.title('Slider')
slider = st.slider(label='slider', min_value=0, max_value=10, value=5)
st.write(slider, 'cubed is', slider * slider * slider)

# *** CHECKBOX ***
st.title('Checkbox')
fig_map = plt.figure(figsize=(12, 8))
ax_map = fig_map.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())
ax_map.set_global()
if st.checkbox('land'): ax_map.add_feature(cfeature.LAND)
if st.checkbox('ocean'): ax_map.add_feature(cfeature.OCEAN)
if st.checkbox('coastline'): ax_map.add_feature(cfeature.COASTLINE)
Esempio n. 5
0
def SwitchExample(argument):
    from vega_datasets import data
    switcher = {"Airports": data.airports(), "Cars": data.cars()}
    return switcher.get(argument, "Not found!")
Esempio n. 6
0
def load_data():
    return pd.concat((data.airports() for _ in range(100)))
Esempio n. 7
0

@st.cache
def select_rows(dataset, nrows):
    return dataset.head(nrows)


@st.cache
def describe(dataset):
    return dataset.describe()


rows = st.slider("Rows", min_value=100, max_value=3300 * 100, step=10000)

start_uncached = time()
dataset_uncached = pd.concat((data.airports() for _ in range(100)))
load_uncached = time()
dataset_sample_uncached = dataset_uncached.head(rows)
select_uncached = time()
describe_uncached_dataset = dataset_sample_uncached.describe()
finish_uncached = time()
benchmark_uncached = (
    f"Cached. Total: {finish_uncached - start_uncached:.2f}s"
    f" Load: {load_uncached - start_uncached:.2f}"
    f" Select: {select_uncached - load_uncached:.2f}"
    f" Describe: {finish_uncached - select_uncached:.2f}"
)

st.text(benchmark_uncached)
st.write(describe_uncached_dataset)
Esempio n. 8
0
ax.add_feature(cfeature.BORDERS, linestyle=':')
ax.add_feature(cfeature.LAKES, alpha=0.5)
ax.add_feature(cfeature.RIVERS)
ax.add_feature(cfeature.STATES)

plt.show()

# ~ #***********************************************************************
# ~ #                    AFFICHAGE AEROPORTS (VEGA_DATASETS)
# ~ #***********************************************************************
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
from vega_datasets import data as vds

airports = vds.airports()
airports = airports.iloc[:10]

plt.figure(figsize=(14, 14))
ax = plt.axes(projection=ccrs.PlateCarree())

# (x0, x1, y0, y1)
ax.set_extent([-130, -60, 20, 55], ccrs.PlateCarree())

ax.add_feature(cfeature.STATES)
ax.coastlines()

for i in airports.itertuples():
    ax.scatter(i.longitude,
               i.latitude,
               color='blue',
Esempio n. 9
0
"""
Locations of US Airports
========================
This is a layered geographic visualization that shows the positions of US
airports on a background of US states.
"""
# category: case studies
import altair as alt
from vega_datasets import data

airports = data.airports()
states = alt.topo_feature(data.us_10m.url, feature='states')

# US states background
background = alt.Chart(states).mark_geoshape(
    fill='lightgray',
    stroke='white'
).properties(
    width=500,
    height=300
).project('albersUsa')

# airport positions on background
points = alt.Chart(airports).mark_circle().encode(
    longitude='longitude:Q',
    latitude='latitude:Q',
    size=alt.value(10),
    color=alt.value('steelblue')
)

background + points