def plot_pca(self, vlm):
		vcy.scatter_viz(vlm.pcs[:,0], vlm.pcs[:,1], c=vlm.colorandum, s=7.5)
		for i in list(set(vlm.ca["ClusterName"])):
			ts_m = np.median(vlm.pcs[vlm.ca["ClusterName"] == i, :], 0)
			plt.text(ts_m[0], ts_m[1], str(vlm.cluster_labels[vlm.ca["ClusterName"] == i][0]),
					 fontsize=13, bbox={"facecolor":"w", "alpha":0.6})
		plt.axis("off");
	def marker_gene_plot(self, vlm, cluster, gene_df, bad_gene_list=[], cols=2, figsize=(16.5,7.5), num_genes=6, dpi=120):

		gene_list = []
		for gene in list(gene_df.loc[gene_df['cluster'] == cluster].index):
			if gene in vlm.ra["Gene"] and gene not in bad_gene_list:
				gene_list.append(gene)
			if len(gene_list) == num_genes:
				break

		if num_genes % cols != 0:
			rows = int(num_genes/cols) + 1
		else:
			rows = int(num_genes/cols)
			
		plt.figure(None, figsize, dpi=dpi)
		gs = plt.GridSpec(rows,cols*3)
		for i, gn in enumerate(gene_list):
			ax = plt.subplot(gs[i*3])
			try:
				ix=np.where(vlm.ra["Gene"] == gn)[0][0]
			except:
				continue
			vcy.scatter_viz(vlm.Sx_sz[ix,:], vlm.Ux_sz[ix,:], c=vlm.colorandum, s=5, alpha=0.4, rasterized=True)
			plt.title(gn)
			xnew = np.linspace(0,vlm.Sx[ix,:].max())
			plt.plot(xnew, vlm.gammas[ix] * xnew + vlm.q[ix], c="k")
			plt.ylim(0, np.max(vlm.Ux_sz[ix,:])*1.02)
			plt.xlim(0, np.max(vlm.Sx_sz[ix,:])*1.02)
			self.minimal_yticks(0, np.max(vlm.Ux_sz[ix,:])*1.02)
			self.minimal_xticks(0, np.max(vlm.Sx_sz[ix,:])*1.02)
			self.despline()

			vlm.plot_velocity_as_color(gene_name=gn, gs=gs[i*3+1], s=3, rasterized=True)
			vlm.plot_expression_as_color(gene_name=gn, gs=gs[i*3+2], s=3, rasterized=True)
		plt.tight_layout()
	def locate_source_sink(self, vlm, figsize=(14,7), dpi=100):
		steps = 100, 100
		grs = []
		for dim_i in range(vlm.embedding.shape[1]):
			m, M = np.min(vlm.embedding[:, dim_i]), np.max(vlm.embedding[:, dim_i])
			m = m - 0.025 * np.abs(M - m)
			M = M + 0.025 * np.abs(M - m)
			gr = np.linspace(m, M, steps[dim_i])
			grs.append(gr)

		meshes_tuple = np.meshgrid(*grs)
		gridpoints_coordinates = np.vstack([i.flat for i in meshes_tuple]).T

		nn = NearestNeighbors()
		nn.fit(vlm.embedding)
		dist, ixs = nn.kneighbors(gridpoints_coordinates, 1)

		diag_step_dist = np.sqrt((meshes_tuple[0][0,0] - meshes_tuple[0][0,1])**2 + (meshes_tuple[1][0,0] - meshes_tuple[1][1,0])**2)
		min_dist = diag_step_dist / 2
		ixs = ixs[dist < min_dist]
		gridpoints_coordinates = gridpoints_coordinates[dist.flat[:]<min_dist,:]
		dist = dist[dist < min_dist]

		ixs = np.unique(ixs)

		vlm.prepare_markov(sigma_D=diag_step_dist, sigma_W=diag_step_dist/2., direction='forward', cells_ixs=ixs)
		vlm.run_markov(starting_p=np.ones(len(ixs)), n_steps=2500)

		diffused_n = vlm.diffused - np.percentile(vlm.diffused, 3)
		diffused_n /= np.percentile(diffused_n, 97)
		diffused_n = np.clip(diffused_n, 0, 1)

		fig, ax = plt.subplots(1,2,figsize=figsize, dpi=dpi)
		plt.subplot(121)
		vcy.scatter_viz(vlm.embedding[ixs, 0], vlm.embedding[ixs, 1],
						c=diffused_n, alpha=0.5, s=50, lw=0.,
						edgecolor="", cmap="viridis_r", rasterized=True)
		plt.title("Sinks")
		plt.axis("off");

		vlm.prepare_markov(sigma_D=diag_step_dist, sigma_W=diag_step_dist/2., direction='backwards', cells_ixs=ixs)
		vlm.run_markov(starting_p=np.ones(len(ixs)), n_steps=2500)

		diffused_n = vlm.diffused - np.percentile(vlm.diffused, 3)
		diffused_n /= np.percentile(diffused_n, 97)
		diffused_n = np.clip(diffused_n, 0, 1)

		plt.subplot(122)
		vcy.scatter_viz(vlm.embedding[ixs, 0], vlm.embedding[ixs, 1],
						c=diffused_n, alpha=0.5, s=50, lw=0.,
						edgecolor="", cmap="viridis_r", rasterized=True)
		plt.title("Sources")
		plt.axis("off");
Esempio n. 4
0
 def plot_doublets_tsne(self, vlm):
     vcy.scatter_viz(vlm.ts[:, 0],
                     vlm.ts[:, 1],
                     c=vlm.ca['doublet_predictions'],
                     s=7.5,
                     cmap=self.truncate_colormap(plt.get_cmap('binary'),
                                                 0.2))
     for i in list(set(vlm.ca["ClusterName"])):
         ts_m = np.median(vlm.ts[vlm.ca["ClusterName"] == i, :], 0)
         plt.text(ts_m[0],
                  ts_m[1],
                  str(vlm.cluster_labels[vlm.ca["ClusterName"] == i][0]),
                  fontsize=13,
                  bbox={
                      "facecolor": "w",
                      "alpha": 0.6
                  })
Esempio n. 5
0
def calculate_gammas(vlm):
    #vlm.normalize("S", size=True, log=False)
    #vlm.normalize("U", size=True,  log=False)
    vlm.knn_imputation(k = 1)
    vlm.normalize_median()
    vlm.fit_gammas(limit_gamma=False, fit_offset=False)
    plt.figure(None, (17,2.8), dpi=80)
    gs = plt.GridSpec(1,6)
    for i, gn in enumerate(vlm.ra["Gene"][1:5]):
        ax = plt.subplot(gs[i])
        try:
            ix=np.where(vlm.ra["Gene"] == gn)[0][0]
        except:
            continue
        vcy.scatter_viz(vlm.S[ix,:], vlm.U[ix,:], s=5, alpha=0.4, rasterized=True)
        plt.title(gn)
        xnew = np.linspace(0,vlm.S[ix,:].max())
        plt.plot(xnew, vlm.gammas[ix] * xnew + vlm.q[ix], c="k")
        plt.ylim(0, np.max(vlm.U[ix,:])*1.02)
        plt.xlim(0, np.max(vlm.S[ix,:])*1.02)
        #minimal_yticks(0, np.max(vlm.U[ix,:])*1.02)
        #minimal_xticks(0, np.max(vlm.S[ix,:])*1.02)
    plt.savefig(sys.argv[1].split(".loom")[0] + "_gn" + "_gamma.png")
Esempio n. 6
0
vlm.ts = vlm.ca['umap']


cluster_list = vlm.ca["cluster"]


#Use correlation to estimate transition probabilities for every cells to its embedding neighborhood
vlm.estimate_transition_prob(hidim="Sx_sz", embed="ts", transform="sqrt", psc=1,
							 n_neighbors=2000, knn_random=True, sampled_fraction=0.5)

#Use the transition probability to project the velocity direction on the embedding							 
vlm.calculate_embedding_shift(sigma_corr = 0.1, expression_scaling=True)

#plot umap with cluster labels
plt.figure(figsize=(10,10))
vcy.scatter_viz(vlm.ts[:,0], vlm.ts[:,1], c=vlm.colorandum, s=2)
for i in range(len(cluster_list)):
	ts_m = np.median(vlm.ts[vlm.ca["cluster"] == cluster_list[i], :], 0)
	plt.text(ts_m[0], ts_m[1], str(vlm.cluster_labels[vlm.ca["cluster"] == cluster_list[i]][0]),
			 fontsize=13, bbox={"facecolor":"w", "alpha":0.6})

plt.savefig(os.path.join(out_dir,"velocity_label_plot.png"))



#Calculate the velocity using a points on a regular grid and a gaussian kernel
vlm.calculate_grid_arrows(smooth=0.5, steps=(40, 40), n_neighbors=100)
#vlm.flow = vlm.flow*50
#plt.figure(None,(20,10))
plt.figure(figsize=(10,10))
vlm.plot_grid_arrows(quiver_scale=0.1,
Esempio n. 7
0
def pc_plot(vlm):
    vlm.perform_PCA()
    plt.figure(None, (17,3.5))
    vcy.scatter_viz(vlm.pcs[:,0], vlm.pcs[:,1], s=10)
    plt.xlabel("PC1"); plt.ylabel("PC2")
    plt.savefig(sys.argv[1].split(".loom")[0] + "_pca.png")
Esempio n. 8
0
dist, ixs = nn.kneighbors(gridpoints_coordinates, 1)

diag_step_dist = np.sqrt((meshes_tuple[0][0, 0] - meshes_tuple[0][0, 1])**2 +
                         (meshes_tuple[1][0, 0] - meshes_tuple[1][1, 0])**2)
min_dist = diag_step_dist / 2
ixs = ixs[dist < min_dist]
gridpoints_coordinates = gridpoints_coordinates[dist.flat[:] < min_dist, :]
dist = dist[dist < min_dist]

ixs = np.unique(ixs)

plt.figure(None, (8, 8))
vcy.scatter_viz(vlm.embedding[ixs, 0],
                vlm.embedding[ixs, 1],
                c=vlm.colorandum[ixs],
                alpha=1,
                s=30,
                lw=0.4,
                edgecolor="0.4")

vlm.prepare_markov(sigma_D=diag_step_dist,
                   sigma_W=diag_step_dist / 2.,
                   direction='forward',
                   cells_ixs=ixs)

vlm.run_markov(starting_p=np.ones(len(ixs)), n_steps=2500)

diffused_n = vlm.diffused - np.percentile(vlm.diffused, 3)
diffused_n /= np.percentile(diffused_n, 97)
diffused_n = np.clip(diffused_n, 0, 1)
Esempio n. 9
0
    'OPC': np.array([0.61, 0.13, 0.72352941]),
    'nIPC': np.array([0.9, 0.8, 0.3]),
    'Nbl1': np.array([0.7, 0.82, 0.6]),
    'Nbl2': np.array([0.448, 0.85490196, 0.95098039]),
    'ImmGranule1': np.array([0.35, 0.4, 0.82]),
    'ImmGranule2': np.array([0.23, 0.3, 0.7]),
    'Granule': np.array([0.05, 0.11, 0.51]),
    'CA': np.array([0.2, 0.53, 0.71]),
    'CA1-Sub': np.array([0.1, 0.45, 0.3]),
    'CA2-3-4': np.array([0.3, 0.35, 0.5])
}
vlm.set_clusters(vlm.ca["ClusterName"], cluster_colors_dict=colors_dict)

# Plot TSNE
plt.figure(figsize=(10, 10))
vcy.scatter_viz(vlm.ts[:, 0], vlm.ts[:, 1], c=vlm.colorandum, s=2)
for i in range(max(vlm.ca["Clusters"])):
    ts_m = np.median(vlm.ts[vlm.ca["Clusters"] == i, :], 0)
    plt.text(ts_m[0],
             ts_m[1],
             str(vlm.cluster_labels[vlm.ca["Clusters"] == i][0]),
             fontsize=13,
             bbox={
                 "facecolor": "w",
                 "alpha": 0.6
             })
plt.axis("off")
vlm.plot_fractions()

#Velocity Analysis
vlm.filter_cells(bool_array=vlm.initial_Ucell_size > np.percentile(
plt.savefig(print_dir + "raw_velocity.pdf")

# %% velocity tsne
ind.calculate_grid_arrows(smooth=0.8, steps=(30, 30), n_neighbors=300)
f, ax = plt.subplots(1,1, figsize=(10,10))
ind.plot_grid_arrows(quiver_scale=0.05,
                    scatter_kwargs_dict={"alpha":0.35, "lw":0.35, "edgecolor":"0.4", "s":38, "rasterized":True}, min_mass=1, angles='xy', scale_units='xy',
                    headaxislength=2.75, headlength=5, headwidth=4.8, minlength=0.35,
                    plot_random=False, scale_type='absolute')

plt.axis("off");
plt.savefig(print_dir + "average_velocity.pdf")

# %%tsne with cluster names
f, ax = plt.subplots(1,1, figsize=(10,10))
vcy.scatter_viz(ind.ts[:,0], ind.ts[:,1], c=ind.colorandum, s=7.5)
for i in list(set(ind.ca["ClusterName"])):
    ts_m = np.median(ind.ts[ind.ca["ClusterName"] == i, :], 0)
    plt.text(ts_m[0], ts_m[1], str(ind.cluster_labels[ind.ca["ClusterName"] == i][0]),
             fontsize=13, bbox={"facecolor":"w", "alpha":0.6})
plt.axis("off");

################################################################################
#                           Pseudotime projection                              #
################################################################################

#make a copy of ind object for pseudotime Analysis
ind_pseudotime = deepcopy(ind)

def array_to_rmatrix(X):
    nr, nc = X.shape
Esempio n. 11
0
gene_list = [
    'Pdgfra',
    'Cspg4',
    'Olig1',
    'Olig2',
    "Chd8",
    "Smarca4",
]

for i, gene in enumerate(gene_list):
    plt.subplot(gs[i])
    this_colorandum = Sx_sz[np.where(genenames == gene)[0][0], :]
    vcy.scatter_viz(vlm.ts[:, 0],
                    vlm.ts[:, 1],
                    c=this_colorandum,
                    cmap="magma_r",
                    alpha=0.35,
                    s=3,
                    rasterized=True)
    plt.title(gene)
    plt.axis("off")

#plt.savefig("../figures/Haber_cellcycle_genes.pdf")

plt.savefig('gene.pdf')

#############

plt.figure(None, (5, 8))
gs = plt.GridSpec(3, 2)
gene_list = [
Esempio n. 12
0
plt.figure(None, (20, 10))
vlm.plot_grid_arrows(quiver_scale=3.0, plot_random=True, scale_type="relative")
plt.savefig("vectorfield.pdf")

genes = ["Pdpn", "Hopx", "Emp2", "Trp53", "Top2a", "Aqp5", "Rtkn2", "Ager"]
plt.figure(None, (17, 24), dpi=80)
gs = plt.GridSpec(10, 6)
for i, gn in enumerate(genes):
    ax = plt.subplot(gs[i * 3])
    try:
        ix = np.where(vlm.ra["Gene"] == gn)[0][0]
    except:
        continue
    vcy.scatter_viz(vlm.Sx_sz[ix, :],
                    vlm.Ux_sz[ix, :],
                    c=vlm.colorandum,
                    s=5,
                    alpha=0.4,
                    rasterized=True)
    plt.title(gn)
    xnew = np.linspace(0, vlm.Sx[ix, :].max())
    plt.plot(xnew, vlm.gammas[ix] * xnew + vlm.q[ix], c="k")
    plt.ylim(0, np.max(vlm.Ux_sz[ix, :]) * 1.02)
    plt.xlim(0, np.max(vlm.Sx_sz[ix, :]) * 1.02)
    minimal_yticks(0, np.max(vlm.Ux_sz[ix, :]) * 1.02)
    minimal_xticks(0, np.max(vlm.Sx_sz[ix, :]) * 1.02)
    despline()

    vlm.plot_velocity_as_color(gene_name=gn,
                               gs=gs[i * 3 + 1],
                               s=3,
                               rasterized=True)
Esempio n. 13
0
def plot_genes_velocity(vlm, genes):
    """This function plots the distribution of spliced and unspliced counts for 
    a given gene, as well as the estimated steads state, and velocity as color on the embedding. 
    
    Parameters
    --------
    vlm: VelocytoLoom object
    genes: list
        list of genes to consider
    """

    # visualise

    n_genes = len(genes)
    n_row = np.int(np.ceil(n_genes / 2))
    n_col = 6
    plt.figure(None, (17, 2.8 * n_row), dpi=80)
    gs = plt.GridSpec(n_row, n_col)

    for i, gn in enumerate(genes):
        ax = plt.subplot(gs[i * 3])
        try:
            ix = np.where(vlm.ra["Gene"] == gn)[0][0]
        except:
            continue
        # make a scatter plot of spliced and unspliced counts
        vcy.scatter_viz(vlm.Sx_sz[ix, :],
                        vlm.Ux_sz[ix, :],
                        c=vlm.colorandum,
                        s=5,
                        alpha=0.4,
                        rasterized=True)
        plt.title(gn)
        plt.xlabel('Spliced')
        plt.ylabel('Unspliced')

        # add the trend showing the estimated steadt state
        xnew = np.linspace(0, vlm.Sx[ix, :].max())
        plt.plot(xnew, vlm.gammas[ix] * xnew + vlm.q[ix], c='k')

        # change the axis limits
        plt.ylim(0, np.max(vlm.Ux_sz[ix, :]) * 1.02)
        plt.xlim(0, np.max(vlm.Sx_sz[ix, :]) * 1.02)

        # have fewer ticks on the yaxis
        minimal_yticks(0, np.max(vlm.Ux_sz[ix, :]) * 1.02)
        minimal_xticks(0, np.max(vlm.Sx_sz[ix, :]) * 1.02)
        # get rid of the top and right axis
        despline()

        # plot velocoties
        vlm.plot_velocity_as_color(gene_name=gn,
                                   gs=gs[i * 3 + 1],
                                   s=3,
                                   rasterized=True)
        vlm.plot_expression_as_color(gene_name=gn,
                                     gs=gs[i * 3 + 2],
                                     s=3,
                                     rasterized=True)

        plt.tight_layout()