Esempio n. 1
0
def model(winequality_vd):
    current_cursor().execute("DROP MODEL IF EXISTS norm_model_test")
    model_class = Normalizer("norm_model_test", )
    model_class.fit("public.winequality",
                    ["citric_acid", "residual_sugar", "alcohol"])
    yield model_class
    model_class.drop()
Esempio n. 2
0
 def test_model_from_vDF(self, winequality_vd):
     current_cursor().execute("DROP MODEL IF EXISTS norm_vDF")
     model_test = Normalizer("norm_vDF", )
     model_test.fit(winequality_vd, ["alcohol", "quality"])
     current_cursor().execute(
         "SELECT model_name FROM models WHERE model_name = 'norm_vDF'")
     assert current_cursor().fetchone()[0] == "norm_vDF"
     model_test.drop()
Esempio n. 3
0
 def test_model_from_vDF(self, base, winequality_vd):
     base.cursor.execute("DROP MODEL IF EXISTS norm_vDF")
     model_test = Normalizer("norm_vDF", cursor=base.cursor)
     model_test.fit(winequality_vd, ["alcohol", "quality"])
     base.cursor.execute(
         "SELECT model_name FROM models WHERE model_name = 'norm_vDF'")
     assert base.cursor.fetchone()[0] == "norm_vDF"
     model_test.drop()
Esempio n. 4
0
    def test_set_cursor(self, base):
        model_test = Normalizer("norm_cursor_test", cursor=base.cursor)
        # TODO: creat a new cursor
        model_test.set_cursor(base.cursor)
        model_test.drop()
        model_test.fit("public.winequality", ["alcohol"])

        base.cursor.execute(
            "SELECT model_name FROM models WHERE model_name = 'norm_cursor_test'"
        )
        assert base.cursor.fetchone()[0] == "norm_cursor_test"
        model_test.drop()
Esempio n. 5
0
 def test_to_python(self, model):
     # Zscore
     current_cursor().execute(
         "SELECT APPLY_NORMALIZE(citric_acid, residual_sugar, alcohol USING PARAMETERS model_name = '{}', match_by_pos=True) FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model.name))
     prediction = current_cursor().fetchone()[0]
     assert prediction == pytest.approx(
         model.to_python(return_str=False)([[3.0, 11.0, 93.0]])[0][0])
     # Minmax
     model2 = Normalizer("norm_model_test2", method="minmax")
     model2.drop()
     model2.fit("public.winequality",
                ["citric_acid", "residual_sugar", "alcohol"])
     current_cursor().execute(
         "SELECT APPLY_NORMALIZE(citric_acid, residual_sugar, alcohol USING PARAMETERS model_name = '{}', match_by_pos=True) FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model2.name))
     prediction = current_cursor().fetchone()[0]
     assert prediction == pytest.approx(
         model2.to_python(return_str=False)([[3.0, 11.0, 93.0]])[0][0])
     model2.drop()
     # Robust Zscore
     model3 = Normalizer("norm_model_test2", method="robust_zscore")
     model3.drop()
     model3.fit("public.winequality",
                ["citric_acid", "residual_sugar", "alcohol"])
     current_cursor().execute(
         "SELECT APPLY_NORMALIZE(citric_acid, residual_sugar, alcohol USING PARAMETERS model_name = '{}', match_by_pos=True) FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model3.name))
     prediction = current_cursor().fetchone()[0]
     assert prediction == pytest.approx(
         model3.to_python(return_str=False)([[3.0, 11.0, 93.0]])[0][0])
     model3.drop()
Esempio n. 6
0
    def test_drop(self):
        current_cursor().execute("DROP MODEL IF EXISTS norm_model_test_drop")
        model_test = Normalizer("norm_model_test_drop", )
        model_test.fit("public.winequality", ["alcohol", "quality"])

        current_cursor().execute(
            "SELECT model_name FROM models WHERE model_name = 'norm_model_test_drop'"
        )
        assert current_cursor().fetchone()[0] == "norm_model_test_drop"

        model_test.drop()
        current_cursor().execute(
            "SELECT model_name FROM models WHERE model_name = 'norm_model_test_drop'"
        )
        assert current_cursor().fetchone() is None
Esempio n. 7
0
    def test_drop(self, base):
        base.cursor.execute("DROP MODEL IF EXISTS norm_model_test_drop")
        model_test = Normalizer("norm_model_test_drop", cursor=base.cursor)
        model_test.fit("public.winequality", ["alcohol", "quality"])

        base.cursor.execute(
            "SELECT model_name FROM models WHERE model_name = 'norm_model_test_drop'"
        )
        assert base.cursor.fetchone()[0] == "norm_model_test_drop"

        model_test.drop()
        base.cursor.execute(
            "SELECT model_name FROM models WHERE model_name = 'norm_model_test_drop'"
        )
        assert base.cursor.fetchone() is None
Esempio n. 8
0
 def test_to_memmodel(self, model):
     # Zscore
     current_cursor().execute(
         "SELECT APPLY_NORMALIZE(citric_acid, residual_sugar, alcohol USING PARAMETERS model_name = '{}', match_by_pos=True) FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model.name))
     prediction = [float(elem) for elem in current_cursor().fetchone()]
     current_cursor().execute(
         "SELECT {} FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(", ".join(model.to_memmodel().transform_sql(
             ["citric_acid", "residual_sugar", "alcohol"]))))
     prediction2 = [float(elem) for elem in current_cursor().fetchone()]
     assert prediction == pytest.approx(prediction2)
     prediction3 = model.to_memmodel().transform([[3.0, 11.0, 93.0]])
     assert prediction[0] == pytest.approx(prediction3[0][0])
     assert prediction[1] == pytest.approx(prediction3[0][1])
     assert prediction[2] == pytest.approx(prediction3[0][2])
     # Minmax
     model2 = Normalizer("norm_model_test2", method="minmax")
     model2.drop()
     model2.fit("public.winequality",
                ["citric_acid", "residual_sugar", "alcohol"])
     current_cursor().execute(
         "SELECT APPLY_NORMALIZE(citric_acid, residual_sugar, alcohol USING PARAMETERS model_name = '{}', match_by_pos=True) FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model2.name))
     prediction = [float(elem) for elem in current_cursor().fetchone()]
     current_cursor().execute(
         "SELECT {} FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(", ".join(model2.to_memmodel().transform_sql(
             ["citric_acid", "residual_sugar", "alcohol"]))))
     prediction2 = [float(elem) for elem in current_cursor().fetchone()]
     assert prediction == pytest.approx(prediction2)
     prediction3 = model2.to_memmodel().transform([[3.0, 11.0, 93.0]])
     assert prediction[0] == pytest.approx(prediction3[0][0])
     assert prediction[1] == pytest.approx(prediction3[0][1])
     assert prediction[2] == pytest.approx(prediction3[0][2])
     model2.drop()
     # Robust Zscore
     model3 = Normalizer("norm_model_test2", method="robust_zscore")
     model3.drop()
     model3.fit("public.winequality",
                ["citric_acid", "residual_sugar", "alcohol"])
     current_cursor().execute(
         "SELECT APPLY_NORMALIZE(citric_acid, residual_sugar, alcohol USING PARAMETERS model_name = '{}', match_by_pos=True) FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model3.name))
     prediction = [float(elem) for elem in current_cursor().fetchone()]
     current_cursor().execute(
         "SELECT {} FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(", ".join(model3.to_memmodel().transform_sql(
             ["citric_acid", "residual_sugar", "alcohol"]))))
     prediction2 = [float(elem) for elem in current_cursor().fetchone()]
     assert prediction == pytest.approx(prediction2)
     prediction3 = model3.to_memmodel().transform([[3.0, 11.0, 93.0]])
     assert prediction[0] == pytest.approx(prediction3[0][0])
     assert prediction[1] == pytest.approx(prediction3[0][1])
     assert prediction[2] == pytest.approx(prediction3[0][2])
     model3.drop()
Esempio n. 9
0
 def test_to_sql(self, model):
     # Zscore
     model.cursor.execute(
         "SELECT APPLY_NORMALIZE(citric_acid, residual_sugar, alcohol USING PARAMETERS model_name = '{}', match_by_pos=True) FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model.name))
     prediction = [float(elem) for elem in model.cursor.fetchone()]
     model.cursor.execute(
         "SELECT {} FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model.to_sql()))
     prediction2 = [float(elem) for elem in model.cursor.fetchone()]
     assert prediction == pytest.approx(prediction2)
     # Minmax
     model2 = Normalizer("norm_model_test2",
                         cursor=model.cursor,
                         method="minmax")
     model2.drop()
     model2.fit("public.winequality",
                ["citric_acid", "residual_sugar", "alcohol"])
     model2.cursor.execute(
         "SELECT APPLY_NORMALIZE(citric_acid, residual_sugar, alcohol USING PARAMETERS model_name = '{}', match_by_pos=True) FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model2.name))
     prediction = [float(elem) for elem in model2.cursor.fetchone()]
     model2.cursor.execute(
         "SELECT {} FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model2.to_sql()))
     prediction2 = [float(elem) for elem in model2.cursor.fetchone()]
     assert prediction == pytest.approx(prediction2)
     model2.drop()
     # Robust Zscore
     model3 = Normalizer("norm_model_test2",
                         cursor=model.cursor,
                         method="robust_zscore")
     model3.drop()
     model3.fit("public.winequality",
                ["citric_acid", "residual_sugar", "alcohol"])
     model3.cursor.execute(
         "SELECT APPLY_NORMALIZE(citric_acid, residual_sugar, alcohol USING PARAMETERS model_name = '{}', match_by_pos=True) FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model3.name))
     prediction = [float(elem) for elem in model3.cursor.fetchone()]
     model3.cursor.execute(
         "SELECT {} FROM (SELECT 3.0 AS citric_acid, 11.0 AS residual_sugar, 93. AS alcohol) x"
         .format(model3.to_sql()))
     prediction2 = [float(elem) for elem in model3.cursor.fetchone()]
     assert prediction == pytest.approx(prediction2)
     model3.drop()
Esempio n. 10
0
 def test_get_transform(self, winequality_vd, model):
     # Zscore
     winequality_trans = model.transform(
         winequality_vd, X=["citric_acid", "residual_sugar", "alcohol"])
     assert winequality_trans["citric_acid"].mean() == pytest.approx(
         0.0, abs=1e-6)
     assert winequality_trans["residual_sugar"].mean() == pytest.approx(
         0.0, abs=1e-6)
     assert winequality_trans["alcohol"].mean() == pytest.approx(0.0,
                                                                 abs=1e-6)
     # Minmax
     model2 = Normalizer("norm_model_test2",
                         cursor=model.cursor,
                         method="minmax")
     model2.drop()
     model2.fit("public.winequality",
                ["citric_acid", "residual_sugar", "alcohol"])
     winequality_trans = model2.transform(
         winequality_vd, X=["citric_acid", "residual_sugar", "alcohol"])
     assert winequality_trans["citric_acid"].min() == pytest.approx(
         0.0, abs=1e-6)
     assert winequality_trans["residual_sugar"].max() == pytest.approx(
         1.0, abs=1e-6)
     assert winequality_trans["alcohol"].min() == pytest.approx(0.0,
                                                                abs=1e-6)
     model2.drop()
     # Robust Zscore
     model3 = Normalizer("norm_model_test2",
                         cursor=model.cursor,
                         method="robust_zscore")
     model3.drop()
     model3.fit("public.winequality",
                ["citric_acid", "residual_sugar", "alcohol"])
     winequality_trans = model3.transform(
         winequality_vd, X=["citric_acid", "residual_sugar", "alcohol"])
     assert winequality_trans["citric_acid"].median() == pytest.approx(
         0.0, abs=1e-6)
     assert winequality_trans["residual_sugar"].median() == pytest.approx(
         0.0, abs=1e-6)
     assert winequality_trans["alcohol"].median() == pytest.approx(0.0,
                                                                   abs=1e-6)
     model3.drop()
Esempio n. 11
0
 def test_repr(self, model):
     assert "column_name  |  avg   |std_dev" in model.__repr__()
     model_repr = Normalizer("model_repr")
     model_repr.drop()
     assert model_repr.__repr__() == "<Normalizer>"