Esempio n. 1
0
    def test_get_config_list_corrupt_2(self):
        class TestALH:
            def get(self, resource):
                s = "dev #0, Test, 2 configs:"
                return s.encode('ascii')

        alh = TestALH()
        s = SpectrumSensor(alh)

        self.assertRaises(CRCError, s.get_config_list)
Esempio n. 2
0
    def get_radio_info(self, platform_id):
        if platform_id == "sensor":
            sensor = SpectrumSensor(self.node)
            config_list = sensor.get_config_list()
        elif platform_id == "generator":
            generator = SignalGenerator(self.node)
            config_list = generator.get_config_list()
        else:
            config_list = str(platform_id) + ": Not supported! Try: sensor or generator"

        return config_list
Esempio n. 3
0
    def test_sweep_1(self):
        class MockALH(ALHProtocol):
            def _post(self, resource, data, *args):
                return b"\x00\x00\x01\x00\x02\x00D\xa4H;"

        alh = MockALH()
        ss = SpectrumSensor(alh)

        sc = self._get_sc()
        r = ss.sweep(sc)

        self.assertEqual(r.data, [0., .01, .02])
Esempio n. 4
0
    def test_get_config_list_corrupt_1(self):
        class TestALH:
            def get(self, resource):
                return "".encode('ascii')

        alh = TestALH()
        s = SpectrumSensor(alh)

        cl = s.get_config_list()

        self.assertEqual(cl.configs, [])
        self.assertEqual(cl.devices, [])
Esempio n. 5
0
 def get_measurements(self, params):
     if not self.sensor:
         self.sensor = SpectrumSensor(self.node)
         config_list = self.sensor.get_config_list()
         self.sweep_config = config_list.get_sweep_config(params[0], params[1], params[2])
         if self.sweep_config is None:
             self.sensor = None
             raise Exception("Node can not scan specified frequency range.")
     sweep = self.sensor.sweep(self.sweep_config)
     f = list(self.sweep_config.get_hz_list())
     p = sweep.data
     return {'frequency':f, 'power':p}
Esempio n. 6
0
    def test_sweep_2(self):
        class MockALH(ALHProtocol):
            def _post(self, resource, data, *args):
                # negative CRC
                return b"\x00\x00\x01\x00\x08\x00\xceL\xa7\xc1"

        alh = MockALH()
        ss = SpectrumSensor(alh)

        sc = self._get_sc()
        r = ss.sweep(sc)

        self.assertEqual(r.data, [0., .01, .08])
Esempio n. 7
0
    def __init__(self, txnode, rxnode):
        # We set up the SignalGenerator and SpectrumSensor objects here
        # for later use. We also query both nodes for their
        # corresponding lists of available hardware configurations.
        #
        # Since hardware will not change during the experiment, we only
        # do the query once in object constructor. This makes repeated
        # measurements faster.
        self.generator = SignalGenerator(txnode)
        self.generator_cl = self.generator.get_config_list()

        self.sensor = SpectrumSensor(rxnode)
        self.sensor_cl = self.sensor.get_config_list()
Esempio n. 8
0
    def test_get_config_list(self):
        class TestALH:
            def get(self, resource):
                s = "dev #0, Test, 1 configs:\n" \
                 "  cfg #0: Test:\n" \
                 "     base: 10 Hz, spacing: 1 Hz, bw: 1 Hz, channels: 10, time: 1 ms"
                return s.encode('ascii')

        alh = TestALH()
        s = SpectrumSensor(alh)

        cl = s.get_config_list()

        self.assertEqual(len(cl.devices), 1)
        self.assertEqual(len(cl.configs), 1)
Esempio n. 9
0
    def test_retrieve(self):
        class MockALH(ALHProtocol):
            def _get(self, resource, *args):
                if b"Info" in resource:
                    return b"status=COMPLETE,size=14"
                else:
                    return b"\x00\x00\x00\x00\x00\x00\x01\x00\x02\x00\x91m\x00i"

        alh = MockALH()
        ss = SpectrumSensor(alh)

        sc = self._get_sc()
        p = SpectrumSensorProgram(sc, 0, 10, 1)

        r = ss.retrieve(p)

        self.assertEqual(len(r.sweeps), 1)
        self.assertEqual(r.sweeps[0].data, [0., .01, .02])
        self.assertEqual(r.sweeps[0].timestamp, 0)
Esempio n. 10
0
    def setup(self, options):

        if not options.verbosity:
            options.verbosity = "warning"

        coor = get_coordinator(options)
        coor.post("prog/firstcall", "1")

        self.node = ALHProxy(coor, options.node)
        self.node.post("prog/firstcall", "1")

        self.spectrumsensor = SpectrumSensor(self.node)

        self.config_list = self.spectrumsensor.get_config_list()
        if not self.config_list.configs:
            raise Exception("Device returned no configurations. "
                            "It is still scanning or not responding.")

        self.config = self.config_list.get_config(self.device_id,
                                                  self.config_id)
Esempio n. 11
0
def main():
    # Turn on logging so that we can see ALH requests happening in the
    # background.
    logging.basicConfig(level=logging.INFO)

    coor = alh.ALHWeb("https://crn.log-a-tec.eu/communicator", 10001)

    # Node 19 is equipped with an UHF receiver (TDA18219 on SNE-ISMTV-UHF)
    node = alh.ALHProxy(coor, 19)

    # Node 17 is equipped with an 2.4 GHz receiver (CC2500 on SNE-ISMTV-24)
    #node = alh.ALHProxy(coor, 17)

    # Wrap an ALHProxy object with a SpectrumSensor object that provides an
    # convenient interface to spectrum sensing functionality of the node
    # exposed through ALH resources.
    sensor = SpectrumSensor(node)

    # Get a ConfigList object that contains a list of device configurations
    # supported by the chosen sensor node.
    config_list = sensor.get_config_list()

    # ConfigList.get_sweep_config() method will automatically choose
    # the best device and configuration that can cover the requested
    # frequency range.
    #
    # It returns an instance of SweepConfig class that describes all
    # the settings for a frequency sweep.
    #
    # First example defines a sweep starting at 550 MHz and ending at
    # 574 MHz with 2 MHz steps (use with node 19)
    #
    # Second example define a sweep starting at 2420 MHz and ending at
    # 2430 MHz with 400 kHz steps (use with node 17)
    sweep_config = config_list.get_sweep_config(550e6, 574e6, 1e6)
    #sweep_config = config_list.get_sweep_config(2420e6, 2430e6, 400e3)

    if sweep_config is None:
        raise Exception("Node can not scan specified frequency range.")

    pyplot.ion()

    while True:
        # Perform the sweep
        sweep = sensor.sweep(sweep_config)

        # Get the list of frequencies covered by the sweep
        f_hz = sweep_config.get_hz_list()

        # Convert list from Hz to MHz for nicer plot
        f_mhz = numpy.array(f_hz) / 1e6

        pyplot.clf()
        pyplot.grid()
        pyplot.xlabel("frequency [MHz]")
        pyplot.ylabel("power [dBm]")

        # Plot data
        pyplot.plot(f_mhz, sweep.data)

        pyplot.axis([min(f_mhz), max(f_mhz), -110, -50])
        pyplot.draw()

        pyplot.pause(1)
def main():
	coor_industrial_zone = alh.ALHWeb(get_communicator_url(), 10001)

	time_start = time.time() + 30

	# Set up transmissions

	for node_id in [10, 8, 7]:
		node = alh.ALHProxy(coor_industrial_zone, node_id)
		node.post("prog/firstCall", "1")

	su1 = SignalGenerator(alh.ALHProxy(coor_industrial_zone, 10))
	su2 = SignalGenerator(alh.ALHProxy(coor_industrial_zone, 8))
	mic = SignalGenerator(alh.ALHProxy(coor_industrial_zone, 7))

	config_list = su1.get_config_list()

	tx_config = config_list.get_tx_config(0, 0)

	mic.program( SignalGeneratorProgram(
		config_list.get_tx_config(f_hz=790e6, power_dbm=0),
		time_start=time_start+30,
		time_duration=40) )

	mic.program( SignalGeneratorProgram(
		config_list.get_tx_config(f_hz=807e6, power_dbm=0),
		time_start=time_start+80,
		time_duration=40) )

	su1.program( SignalGeneratorProgram(
		config_list.get_tx_config(f_hz=787e6, power_dbm=0),
		time_start=time_start,
		time_duration=35) )

	su1.program( SignalGeneratorProgram(
		config_list.get_tx_config(f_hz=780e6, power_dbm=0),
		time_start=time_start+35,
		time_duration=90) )

	su2.program( SignalGeneratorProgram(
		config_list.get_tx_config(f_hz=795e6, power_dbm=0),
		time_start=time_start,
		time_duration=35) )

	su2.program( SignalGeneratorProgram(
		config_list.get_tx_config(f_hz=800e6, power_dbm=0),
		time_start=time_start+35,
		time_duration=50) )

	su2.program( SignalGeneratorProgram(
		config_list.get_tx_config(f_hz=797e6, power_dbm=0),
		time_start=time_start+85,
		time_duration=35) )

	# Set up spectrum sensing

	sensor_node_ids = [ 19 ]

	sensor_nodes = [ alh.ALHProxy(coor_industrial_zone, id) for id in sensor_node_ids ]
	sensors = [ SpectrumSensor(sensor_node) for sensor_node in sensor_nodes ]

	config_list = sensors[0].get_config_list()
	sweep_config = config_list.get_sweep_config(
			start_hz=770000000, stop_hz=820000000, step_hz=400000)
	
	# -1 below is a work-around for an off-by-one error somewhere in the spectrum sensing
	# resource handler
	sweep_config.num_channels -= 1

	program = SpectrumSensorProgram(sweep_config, time_start, time_duration=120, slot_id=5)

	for sensor in sensors:
		sensor.program(program)

	
	# Wait for the experiment to finish

	for sensor in sensors:
		while not sensor.is_complete(program):
			print "waiting..."
			time.sleep(2)

			if time.time() > (program.time_start + program.time_duration + 30):
				raise Exception("Something went wrong")

		print "experiment is finished. retrieving data."

		result = sensor.retrieve(program)

		try:
			os.mkdir("data")
		except OSError:
			pass

		result.write("data/node_%d.dat" % (sensor.alh.addr,))
def main():
    coor_industrial_zone = alh.ALHWeb(get_communicator_url(), 10001)

    time_start = time.time() + 15

    # Set up transmissions

    cognitive_terminal = SignalGenerator(alh.ALHProxy(coor_industrial_zone,
                                                      25))

    config_list = cognitive_terminal.get_config_list()
    device_config = config_list.get_config(0, 0)

    cognitive_terminal.program(
        SignalGeneratorProgram(TxConfig(device_config, 110, 0),
                               time_start=(time_start + 5),
                               time_duration=25))

    cognitive_terminal.program(
        SignalGeneratorProgram(TxConfig(device_config, 225, 0),
                               time_start=(time_start + 32),
                               time_duration=23))

    legacy_terminal = SignalGenerator(alh.ALHProxy(coor_industrial_zone, 16))

    legacy_terminal.program(
        SignalGeneratorProgram(TxConfig(device_config, 114, 0),
                               time_start=(time_start + 25),
                               time_duration=30))

    # Set up spectrum sensing

    sensor_node_ids = [2, 17, 6]

    sensor_nodes = [
        alh.ALHProxy(coor_industrial_zone, id) for id in sensor_node_ids
    ]
    sensors = [SpectrumSensor(sensor_node) for sensor_node in sensor_nodes]

    config_list = sensors[0].get_config_list()
    sweep_config = config_list.get_config(0, 0).get_full_sweep_config()

    program = SpectrumSensorProgram(sweep_config,
                                    time_start,
                                    time_duration=60,
                                    slot_id=5)

    for sensor in sensors:
        sensor.program(program)

    # Wait for the experiment to finish

    for sensor in sensors:
        while not sensor.is_complete(program):
            print "waiting..."
            time.sleep(2)

            if time.time() > (program.time_start + program.time_duration + 60):
                raise Exception("Something went wrong")

        print "experiment is finished. retrieving data."

        result = sensor.retrieve(program)

        try:
            os.mkdir("data")
        except OSError:
            pass

        result.write("data/node_%d.dat" % (sensor.alh.addr, ))
Esempio n. 14
0
def main():

    # Turn on logging so that we can see requests and responses in the
    # terminal. This is useful to keep track of what is going on during the
    # experiment.
    logging.basicConfig(level=logging.INFO)

    # We must first create an object representing the coordinator node.
    # Each cluster in the LOG-a-TEC has its own coordinator and all
    # communication with the nodes must go through it.
    #
    # The parameters used here correspond to the LOG-a-TEC City Center
    # out-door cluster (see LOG-a-TEC documentation for other valid
    # options).
    #
    # Note that you must have a valid user name and password saved in an
    # "alhrc" file in order for this to work. See vesna-alh-tools README
    # for instructions on how to do that.
    #
    # Also make sure you reserved the cluster in the calendar before
    # running the experiment!
    coor = alh.ALHWeb("https://crn.log-a-tec.eu/communicator", 10002)

    # We will be using node 45 in this example. First we create a generic
    # node object for it.
    node = alh.ALHProxy(coor, 45)

    # We will use our node as a spectrum sensor. Here, we wrap the generic
    # node object with the SpectrumSensor class that provides a convenient
    # interface to the spectrum sensing capabilities of the node's radio
    # hardware.
    sensor = SpectrumSensor(node)

    # Request the list of spectrum sensing configurations that the node
    # supports.
    #
    # Node 45 is equipped with a SNE-ISMTV-2400 radio board that contains a
    # CC2500 reconfigurable transceiver. This tranceiver supports a number
    # of configurations that cover the 2.4 GHz ISM band.
    sensor_config_list = sensor.get_config_list()

    # Let's print the list out in a nice format for future reference.
    print
    print "Spectrum sensing devices and configurations available"
    print "====================================================="
    print sensor_config_list
    print

    # For a demonstration, we'll choose to sense the whole ISM band between
    # 2.4 GHz and 2.5 GHz with 400 kHz steps. We create a SweepConfig object
    # that describes this frequency range.
    sweep_config = sensor_config_list.get_sweep_config(2400e6, 2500e6, 400e3)
    if sweep_config is None:
        raise Exception("Node can not scan specified frequency range.")

    # Take note of current time.
    now = time.time()

    # SpectrumSensorProgram object allows us to program a node to perform a
    # spectrum sensing task in advance. We'll setup a task for sensing the
    # frequency range we selected above, starting 5 seconds from now and
    # lasting for 30 seconds.
    #
    # Each node has local slots for temporary storage of spectrum sensing
    # results. Since we are only performing one scan of the spectrum, it
    # doesn't matter which slot we use. Let's pick slot 1.
    sensor_program = SpectrumSensorProgram(sweep_config, now + 5, 30, 1)

    # Now we actually send the programming instructions over the testbed's
    # management network to the node.
    sensor.program(sensor_program)

    # Wait until the programmed task has been completed.
    while not sensor.is_complete(sensor_program):
        print "patience..."
        time.sleep(2)

    # The task is complete. We must now retrieve spectrum sensing results
    # back from the node to our computer. This might take a while since the
    # management mesh network is slow.
    result = sensor.retrieve(sensor_program)

    # Finally, we write results into a CSV file for further analysis.
    #
    # Alternatively, we could do something else with the results directly
    # from this program. The SpectrumSensorResult object provides some
    # convenient methods for accessing the result of the scan.
    result.write("logatec.csv")
Esempio n. 15
0
def main():
    # Turn on logging so that we can see requests and responses in the
    # terminal.
    logging.basicConfig(level=logging.INFO)

    # We must first create an object representing the coordinator node.
    coor_campus = alh.ALHWeb("https://crn.log-a-tec.eu/communicator", 9501)

    # Our experiment will start 15 seconds into the future - this should
    # give us plenty of time to set up everything.
    time_start = time.time() + 15

    # First we set up the two transmitting nodes:
    #
    # Node 53 in the LOG-a-TEC Campus Zone will be playing the role of
    # the cognitive terminal.
    cognitive_terminal = SignalGenerator(alh.ALHProxy(coor_campus, 53))

    # All nodes we will be using are equipped with SNE-ISMTV-2400 radio
    # boards with CC2500 transceivers. From the available list of
    # signal generation configurations supported by this hardware, we
    # choose the first one: It allows to transmit in 200 kHz wide channels.
    config_list = cognitive_terminal.get_config_list()
    device_config = config_list.get_config(0, 0)

    # Here we program the "cognitive_terminal" node to transmit for 25
    # seconds on channel 110 (2422.0 MHz) and then change to channel 225
    # (2445.0 MHz). Transmission power is set to 0 dBm.
    cognitive_terminal.program(
        SignalGeneratorProgram(TxConfig(device_config, 110, 0),
                               time_start=(time_start + 5),
                               time_duration=25))

    cognitive_terminal.program(
        SignalGeneratorProgram(TxConfig(device_config, 225, 0),
                               time_start=(time_start + 32),
                               time_duration=23))

    # Node 54 in the LOG-a-TEC Campus Zone will be playing the role of
    # the legacy terminal.
    legacy_terminal = SignalGenerator(alh.ALHProxy(coor_campus, 54))

    # The legacy terminal, lacking the capability to change channels on
    # demand, is programmed to just transmit for 30 seconds on channel 114
    # (2422.8 MHz)
    legacy_terminal.program(
        SignalGeneratorProgram(TxConfig(device_config, 114, 0),
                               time_start=(time_start + 25),
                               time_duration=30))

    # Now we setup some sensing nodes so that we can observe the
    # transmissions from different points in the testbed.

    # We will use nodes 51 and 58 for this purpose.
    sensor_node_ids = [51, 58]

    sensor_nodes = [alh.ALHProxy(coor_campus, id) for id in sensor_node_ids]
    sensors = [SpectrumSensor(sensor_node) for sensor_node in sensor_nodes]

    # For sensing, we will use the first sensing configuration (255
    # channels starting at 2.4 GHz with 400 kHz bandwidth)
    config_list = sensors[0].get_config_list()
    sweep_config = config_list.get_config(0, 0).get_full_sweep_config()

    # We instruct the nodes to perform spectrum sensing for 60 seconds.
    program = SpectrumSensorProgram(sweep_config,
                                    time_start,
                                    time_duration=60,
                                    slot_id=5)
    for sensor in sensors:
        sensor.program(program)

    # All nodes have been programmed at this point - wait for the experiment to finish.

    for sensor in sensors:
        while not sensor.is_complete(program):
            print "waiting..."
            time.sleep(2)

            if time.time() > (program.time_start + program.time_duration + 60):
                raise Exception("Something went wrong")

        print "experiment is finished. retrieving data."

        result = sensor.retrieve(program)

        # We will save the sensing results in a "data/" subdirectory.
        # Create it, if it doesn't already exist.
        try:
            os.mkdir("data")
        except OSError:
            pass

        # For each sensing node, we write the results into a CSV file.
        # The CSV file can be easily imported and plotted into tools
        # like MatLab. For example, to plot the recorded spectrogram
        # using GNU Plot, use the following commands:
        #
        # gnuplot> set pm3d map
        # gnuplot> set xlabel "frequency [MHz]"
        # gnuplot> set ylabel "time [s]"
        # gnuplot> set cblabel "power [dBm]"
        # gnuplot> unset key
        # gnuplot> splot "node17.csv" using ($2/1e6):1:3
        result.write("data/node_%d.csv" % (sensor.alh.addr, ))
def main():
    # Turn on logging so that we can see ALH requests happening in the
    # background.
    logging.basicConfig(level=logging.INFO)

    coor = alh.ALHWeb("https://crn.log-a-tec.eu/communicator", 10001)

    # Nodes 16 and 17 are equipped with an 2.4 GHz tranceiver (CC2500 on
    # SNE-ISMTV-24) that is capable of transmitting and receiving on the
    # 2.4 GHz ISM band.
    node16 = alh.ALHProxy(coor, 16)
    node17 = alh.ALHProxy(coor, 17)

    # We will use node 16 as a signal generator. We wrap its ALHProxy
    # object with a SignalGenerator object for convenience.
    generator = SignalGenerator(node16)

    # Set up a transmission configuration for 2.425 GHz and 0 dBm
    generator_config_list = generator.get_config_list()

    tx_config = generator_config_list.get_tx_config(2425e6, 0)
    if tx_config is None:
        raise Exception("Node can not scan specified frequency range.")

    # We will use node 17 as a spectrum sensor. Again, we wrap it with a
    # SpectrumSensor object for convenience.
    sensor = SpectrumSensor(node17)

    # We set up a frequency sweep configuration covering 2.40 GHz to 2.45
    # GHz band with 400 kHz steps.
    sensor_config_list = sensor.get_config_list()

    sweep_config = sensor_config_list.get_sweep_config(2400e6, 2450e6, 400e3)
    if sweep_config is None:
        raise Exception("Node can not scan specified frequency range.")

    # Take note of current time.
    now = time.time()

    # SignalGeneratorProgram and SpectrumSensorProgram objects allow us to
    # program signal generation and spectrum sensing tasks in advance.
    #
    # In this case, we setup a signal generation task using the
    # configuration we prepared above starting 10 seconds from now and
    # lasting for 20 seconds.
    #
    # Similarly for spectrum sensing, we setup a task using frequency sweep
    # we prepared above starting 5 seconds from now and lasting for 30
    # seconds. Results of the measurement will be stored in slot 4.
    generator_program = SignalGeneratorProgram(tx_config, now + 10, 20)
    sensor_program = SpectrumSensorProgram(sweep_config, now + 5, 30, 4)

    # Now actually send instructions over the management network to nodes
    # in the testbed.
    generator.program(generator_program)
    sensor.program(sensor_program)

    # Query the spectrum sensing node and wait until the task has been
    # completed.
    while not sensor.is_complete(sensor_program):
        print "waiting..."
        time.sleep(2)

    # Retrieve spectrum sensing results. This might take a while since the
    # management mesh network is slow.
    result = sensor.retrieve(sensor_program)

    # Write results into a CSV file.
    result.write("06-programmed-tasks.dat")