def init_data_loaders(args, use_gpu=True): print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_dataset(name=args.dataset) transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = True if use_gpu else False trainloader = DataLoader( VideoDataset(dataset.train, seq_len=args.seq_len, sample='random',transform=transform_train), sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader( VideoDataset(dataset.query, seq_len=args.seq_len, sample='random', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='random', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) return dataset, trainloader, queryloader, galleryloader
def main(): if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) use_gpu = torch.cuda.is_available() np.random.seed(args.seed) random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) torch.backends.cudnn.deterministic = True cudnn.benchmark = True print("Initializing train dataset {}".format(args.train_dataset)) train_dataset = data_manager.init_dataset(name=args.train_dataset) print("Initializing test dataset {}".format(args.test_dataset)) test_dataset = data_manager.init_dataset(name=args.test_dataset) # print("Initializing train dataset {}".format(args.train_dataset, split_id=6)) # train_dataset = data_manager.init_dataset(name=args.train_dataset) # print("Initializing test dataset {}".format(args.test_dataset, split_id=6)) # test_dataset = data_manager.init_dataset(name=args.test_dataset) transform_train = T.Compose([ T.Resize([args.height, args.width]), T.RandomHorizontalFlip(), T.Pad(10), T.RandomCrop([args.height, args.width]), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), T.RandomErasing(probability=0.5, mean=[0.485, 0.456, 0.406]) ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = True if use_gpu else False # random_snip first_snip constrain_random evenly trainloader = DataLoader( VideoDataset(train_dataset.train, seq_len=args.seq_len, sample='constrain_random', transform=transform_train), sampler=RandomIdentitySampler(train_dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader( VideoDataset(test_dataset.query, seq_len=args.seq_len, sample='evenly', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( VideoDataset(test_dataset.gallery, seq_len=args.seq_len, sample='evenly', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=train_dataset.num_train_pids, loss={'xent', 'htri'}) print("Model size: {:.5f}M".format( sum(p.numel() for p in model.parameters()) / 1000000.0)) print("load model {0} from {1}".format(args.arch, args.load_model)) if args.load_model != '': pretrained_model = torch.load(args.load_model) model_dict = model.state_dict() pretrained_dict = { k: v for k, v in pretrained_model['state_dict'].items() if k in model_dict } model_dict.update(pretrained_dict) model.load_state_dict(model_dict) start_epoch = pretrained_model['epoch'] + 1 best_rank1 = pretrained_model['rank1'] else: start_epoch = args.start_epoch best_rank1 = -np.inf criterion = dict() criterion['triplet'] = WeightedRegularizedTriplet() criterion['xent'] = CrossEntropyLabelSmooth( num_classes=train_dataset.num_train_pids) criterion['center'] = CenterLoss(num_classes=train_dataset.num_train_pids, feat_dim=512, use_gpu=True) print(criterion) optimizer = dict() optimizer['model'] = model.get_optimizer(args) optimizer['center'] = torch.optim.SGD(criterion['center'].parameters(), lr=0.5) scheduler = lr_scheduler.MultiStepLR(optimizer['model'], milestones=args.stepsize, gamma=args.gamma) print(model) model = nn.DataParallel(model).cuda() if args.evaluate: print("Evaluate only") distmat = test(model, queryloader, galleryloader, args.pool, use_gpu, return_distmat=True) return start_time = time.time() train_time = 0 best_epoch = args.start_epoch print("==> Start training") for epoch in range(start_epoch, args.max_epoch): scheduler.step() print('Epoch', epoch, 'lr', scheduler.get_lr()[0]) start_train_time = time.time() train(epoch, model, criterion, optimizer, trainloader, use_gpu) train_time += round(time.time() - start_train_time) if (epoch + 1) > args.start_eval and args.eval_step > 0 and ( epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch: print("==> Test") rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint( { 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')) print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format( best_rank1, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print( "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.". format(elapsed, train_time))
def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False # set a learning rate if args.lr_factor == -1: args.lr_factor = random() args.lr = args.lr_factor * 10**-args.lr_base #print(f"Choose learning rate {args.lr}") sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'), mode='a') print("==========\nArgs:{}\n==========".format(args)) #assert torch.distributed.is_available() #print("Initializing DDP by nccl-tcp({}) rank({}) world_size({})".format(args.init_method, args.rank, args.world_size)) #dist.init_process_group(backend='nccl', init_method=args.init_method, rank=args.rank, world_size=args.world_size) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_dataset(name=args.dataset, root=args.root) # Data augmentation spatial_transform_train = [ ST.Scale((args.height, args.width), interpolation=3), ST.RandomHorizontalFlip(), ST.ToTensor(), ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ] spatial_transform_train = ST.Compose(spatial_transform_train) temporal_transform_train = TT.TemporalRandomCrop(size=args.seq_len, stride=args.sample_stride) #temporal_transform_train = TT.TemporalRandomCropPick(size=args.seq_len, stride=args.sample_stride) spatial_transform_test = ST.Compose([ ST.Scale((args.height, args.width), interpolation=3), ST.ToTensor(), ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) temporal_transform_test = TT.TemporalBeginCrop(size=args.test_frames) pin_memory = True if use_gpu else False dataset_train = dataset.train if args.dataset == 'duke': dataset_train = dataset.train_dense print('process duke dataset') #sampler = RandomIdentitySampler(dataset_train, num_instances=args.num_instances) if args.dataset == 'lsvid': sampler = RandomIdentitySampler(dataset_train, num_instances=args.num_instances) elif args.dataset == 'mars': sampler = RandomIdentitySampler(dataset_train, num_instances=args.num_instances) trainloader = DataLoader( VideoDataset(dataset_train, spatial_transform=spatial_transform_train, temporal_transform=temporal_transform_train), sampler=sampler, batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) ''' for batch_idx, (vids, pids, camids, img_paths) in enumerate(trainloader): print(batch_idx, pids, camids, img_paths) break return ''' dataset_query = dataset.query dataset_gallery = dataset.gallery if args.dataset == 'lsvid': dataset_query = dataset.val_query dataset_gallery = dataset.val_gallery print('process lsvid dataset') queryloader = DataLoader( VideoDataset(dataset_query, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False ) galleryloader = DataLoader( VideoDataset(dataset_gallery, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, use_gpu=use_gpu, num_classes=dataset.num_train_pids, loss={'xent', 'htri'}) #print(model) if args.resume: print("Loading checkpoint from '{}'".format(args.resume)) checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) criterion_xent = nn.CrossEntropyLoss() criterion_htri = TripletLoss(margin=args.margin, distance=args.distance, use_gpu=use_gpu) criterion_htri_c = TripletInterCamLoss(margin=args.margin, distance=args.distance, use_gpu=use_gpu) #criterion_htri_c = TripletWeightedInterCamLoss(margin=args.margin, distance=args.distance, use_gpu=use_gpu, alpha=args.cam_alpha) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma) start_epoch = args.start_epoch if use_gpu: model = nn.DataParallel(model).cuda() #model = model.cuda() #model = nn.parallel.DistributedDataParallel(model) start_time = time.time() train_time = 0 best_rank1 = -np.inf best_epoch = 0 print("==> Start training") for epoch in range(start_epoch, args.max_epoch): #print("Set sampler seed to {}".format(args.seed*epoch)) #sampler.set_seed(args.seed*epoch) start_train_time = time.time() train(epoch, model, criterion_xent, criterion_htri, criterion_htri_c, optimizer, trainloader, use_gpu) train_time += round(time.time() - start_train_time) scheduler.step() if (epoch+1) >= args.start_eval and (epoch+1) % args.eval_step == 0 or epoch == 0: print("==> Test") with torch.no_grad(): rank1 = test(model, queryloader, galleryloader, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint({ 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch+1) + '.pth.tar')) print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_dataset(name=args.dataset) transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = True if use_gpu else False trainloader = DataLoader( VideoDataset(dataset.train, seq_len=args.seq_len, sample='random', transform=transform_train), sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader( VideoDataset(dataset.query, seq_len=args.seq_len, sample='dense', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='dense', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) if args.arch == 'resnet503d': model = resnet3d.resnet50(num_classes=dataset.num_train_pids, sample_width=args.width, sample_height=args.height, sample_duration=args.seq_len) if not os.path.exists(args.pretrained_model): raise IOError("Can't find pretrained model: {}".format( args.pretrained_model)) print("Loading checkpoint from '{}'".format(args.pretrained_model)) checkpoint = torch.load(args.pretrained_model) state_dict = {} for key in checkpoint['state_dict']: if 'fc' in key: continue state_dict[key.partition("module.") [2]] = checkpoint['state_dict'][key] model.load_state_dict(state_dict, strict=False) else: model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'}) print("Model size: {:.5f}M".format( sum(p.numel() for p in model.parameters()) / 1000000.0)) criterion_xent = CrossEntropyLabelSmooth( num_classes=dataset.num_train_pids, use_gpu=use_gpu) criterion_htri = TripletLoss(margin=args.margin) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) if args.stepsize > 0: scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma) start_epoch = args.start_epoch if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print("Evaluate only") test(model, queryloader, galleryloader, args.pool, use_gpu) return start_time = time.time() best_rank1 = -np.inf if args.arch == 'resnet503d': torch.backends.cudnn.benchmark = False for epoch in range(start_epoch, args.max_epoch): print("==> Epoch {}/{}".format(epoch + 1, args.max_epoch)) train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu) if args.stepsize > 0: scheduler.step() if args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or ( epoch + 1) == args.max_epoch: print("==> Test") rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint( { 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False # set a learning rate #if args.lr_factor == -1: # args.lr_factor = random() #args.lr = args.lr_factor * 10**-args.lr_base #print(f"Choose learning rate {args.lr}") sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'), mode='a') print("==========\nArgs:{}\n==========".format(args)) #assert torch.distributed.is_available() #print("Initializing DDP by nccl-tcp({}) rank({}) world_size({})".format(args.init_method, args.rank, args.world_size)) #dist.init_process_group(backend='nccl', init_method=args.init_method, rank=args.rank, world_size=args.world_size) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_dataset(name=args.dataset, root=args.root) # Data augmentation spatial_transform_train = [ ST.Scale((args.height, args.width), interpolation=3), ST.RandomHorizontalFlip(), ST.ToTensor(), ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ] spatial_transform_train = ST.Compose(spatial_transform_train) temporal_transform_train = TT.TemporalRandomCrop(size=args.seq_len, stride=args.sample_stride) #temporal_transform_train = TT.TemporalRandomCropPick(size=args.seq_len, stride=args.sample_stride) spatial_transform_test = ST.Compose([ ST.Scale((args.height, args.width), interpolation=3), ST.ToTensor(), ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) temporal_transform_test = TT.TemporalBeginCrop(size=args.test_frames) pin_memory = True if use_gpu else False dataset_train = dataset.train if args.dataset == 'duke': dataset_train = dataset.train_dense print('process duke dataset') #sampler = RandomIdentitySampler(dataset_train, num_instances=args.num_instances) if args.dataset == 'lsvid': sampler = RandomIdentityCameraSampler(dataset_train, num_instances=args.num_instances, num_cam=15) elif args.dataset == 'mars': sampler = RandomIdentityCameraSampler(dataset_train, num_instances=args.num_instances, num_cam=6) trainloader = DataLoader( VideoDataset(dataset_train, spatial_transform=spatial_transform_train, temporal_transform=temporal_transform_train), sampler=sampler, batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) ''' for batch_idx, (vids, pids, camids, img_paths) in enumerate(trainloader): print(batch_idx, pids, camids, img_paths) break return ''' dataset_query = dataset.query dataset_gallery = dataset.gallery if args.dataset == 'lsvid': dataset_query = dataset.val_query dataset_gallery = dataset.val_gallery print('process lsvid dataset') queryloader = DataLoader( VideoDataset(dataset_query, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False ) galleryloader = DataLoader( VideoDataset(dataset_gallery, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, use_gpu=use_gpu, num_classes=dataset.num_train_pids, loss={'xent', 'htri'}, transformer_num_heads=args.transformer_num_heads, transformer_num_layers=args.transformer_num_layers, attention_flatness=True) #print(model) if args.resume: print("Loading checkpoint from '{}'".format(args.resume)) checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) criterion_xent = nn.CrossEntropyLoss() criterion_flat = FlatnessLoss(reduction='batchmean', use_gpu=use_gpu) criterion_htri_c = TripletInterCamLoss(margin=args.margin, distance=args.distance, use_gpu=use_gpu) #criterion_htri_c = TripletWeightedInterCamLoss(margin=args.margin, distance=args.distance, use_gpu=use_gpu, alpha=args.cam_alpha) #optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) linear_scaled_lr = args.lr * args.train_batch * len(args.gpu_devices.split(',')) / 512.0 args.lr = linear_scaled_lr
def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_dataset(name=args.dataset) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = True if use_gpu else False queryloader = DataLoader( VideoDataset(dataset.query, seq_len=args.seq_len, sample='dense', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='dense', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) if args.arch == 'resnet503d': cudnn.benchmark = False print("Initializing model: {}".format(args.arch)) if args.arch == 'resnet503d': model = resnet3d.resnet50(num_classes=dataset.num_train_pids, sample_width=args.width, sample_height=args.height, sample_duration=args.seq_len) if not os.path.exists(args.best_model): raise IOError("Can't find best model: {}".format(args.best_model)) print("Loading checkpoint from '{}'".format(args.best_model)) checkpoint = torch.load(args.best_model) state_dict = {} for key in checkpoint['state_dict']: state_dict[key] = checkpoint['state_dict'][key] model.load_state_dict(state_dict, strict=False) else: model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'}) if not os.path.exists(args.best_model): raise IOError("Can't find best model: {}".format(args.best_model)) print("Loading checkpoint from '{}'".format(args.best_model)) checkpoint = torch.load(args.best_model) state_dict = {} for key in checkpoint['state_dict']: state_dict[key] = checkpoint['state_dict'][key] model.load_state_dict(state_dict, strict=False) print("Model size: {:.5f}M".format( sum(p.numel() for p in model.parameters()) / 1000000.0)) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print("Evaluate only") test(model, queryloader, galleryloader, args.pool, use_gpu) # distmat = test(model, queryloader, galleryloader, args.pool, use_gpu) # rnn时不能这么做,否则out of memory # if args.vis_ranked_res: # visualize_ranked_results( # distmat, dataset, # save_dir=osp.join(args.save_dir, 'ranked_results'), # topk=20, # ) return
def main(): args.save_dir = args.save_dir + '/' + args.arch torch.manual_seed(args.seed) # os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False # add data to save_dir args.save_dir = args.save_dir + '_' + args.dataset + '_combined_multisteplr11' if args.pretrained_model is not None: args.save_dir = os.path.dirname(args.pretrained_model) if not osp.exists(args.save_dir): os.makedirs(args.save_dir) log_name = 'test.log' if args.evaluate else 'train.log' log_name += time.strftime('-%Y-%m-%d-%H-%M-%S') sys.stdout = Logger(osp.join(args.save_dir, log_name)) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_dataset(name=args.dataset) print("Train Transforms: \n\ Random2DTranslation, \n\ RandomHorizontalFlip, \n\ ToTensor, \n\ normalize\ ") transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), # T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # T.RandomErasing(p=0.5, scale=(0.02, 0.4), ratio=(0.3, 3.3), value=[0.485, 0.456, 0.406]) ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = True if use_gpu else False trainloader = DataLoader( VideoDataset(dataset.train, seq_len=args.seq_len, sample=args.data_selection, transform=transform_train), sampler=RandomIdentitySampler( dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader( VideoDataset(dataset.query, seq_len=args.seq_len, sample='dense', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='dense', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, seq_len=args.seq_len) # pretrained model loading if args.pretrained_model is not None: if not os.path.exists(args.pretrained_model): raise IOError("Can't find pretrained model: {}".format( args.pretrained_model)) print("Loading checkpoint from '{}'".format(args.pretrained_model)) pretrained_state = torch.load(args.pretrained_model)['state_dict'] print(len(pretrained_state), ' keys in pretrained model') current_model_state = model.state_dict() pretrained_state = {key: val for key, val in pretrained_state.items() if key in current_model_state and val.size() == current_model_state[key].size()} print(len(pretrained_state), ' keys in pretrained model are available in current model') current_model_state.update(pretrained_state) model.load_state_dict(current_model_state) print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters())/1000000.0)) if use_gpu: model = nn.DataParallel(model).cuda() criterion_xent = CrossEntropyLabelSmooth( num_classes=dataset.num_train_pids, use_gpu=use_gpu) criterion_htri = TripletLoss(margin=args.margin) optimizer = torch.optim.Adam( model.parameters(), lr=args.lr, weight_decay=args.weight_decay) if args.stepsize > 0: scheduler = lr_scheduler.StepLR( optimizer, step_size=args.stepsize, gamma=args.gamma) start_epoch = args.start_epoch if args.evaluate: print("Evaluate only") test(model, queryloader, galleryloader, use_gpu) return start_time = time.time() best_rank1 = -np.inf is_first_time = True for epoch in range(start_epoch, args.max_epoch): eta_seconds = (time.time() - start_time) * (args.max_epoch - epoch) / max(epoch, 1) eta_str = str(datetime.timedelta(seconds=int(eta_seconds))) print("==> Epoch {}/{} \teta {}".format(epoch+1, args.max_epoch, eta_str)) train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu) if args.stepsize > 0: scheduler.step() rank1 = 'NA' mAP = 'NA' is_best = False if args.eval_step > 0 and (epoch+1) % args.eval_step == 0 or (epoch+1) == args.max_epoch: print("==> Test") rank1, mAP = test(model, queryloader, galleryloader, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 # save the model as required if (epoch+1) % args.save_step == 0: if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint({ 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, args.save_prefix, 'model' + '.pth.tar-' + str(epoch+1))) is_first_time = False if not is_first_time: utils.disable_all_print_once() elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'), mode='a') print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_dataset(name=args.dataset, root=args.root) # Data augmentation spatial_transform_train = [ ST.Scale((args.height, args.width), interpolation=3), ST.RandomHorizontalFlip(), ST.ToTensor(), ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ] spatial_transform_train = ST.Compose(spatial_transform_train) temporal_transform_train = TT.TemporalRandomCrop(size=args.seq_len, stride=args.sample_stride) spatial_transform_test = ST.Compose([ ST.Scale((args.height, args.width), interpolation=3), ST.ToTensor(), ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) temporal_transform_test = TT.TemporalBeginCrop(size=args.test_frames) pin_memory = True if use_gpu else False dataset_train = dataset.train if args.dataset == 'duke': dataset_train = dataset.train_dense print('process duke dataset') trainloader = DataLoader( VideoDataset(dataset_train, spatial_transform=spatial_transform_train, temporal_transform=temporal_transform_train), sampler=RandomIdentitySampler(dataset_train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader(VideoDataset( dataset.query, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False) galleryloader = DataLoader(VideoDataset( dataset.gallery, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, use_gpu=use_gpu, num_classes=dataset.num_train_pids, loss={'xent', 'htri'}) print(model) criterion_xent = nn.CrossEntropyLoss() criterion_htri = TripletLoss(margin=args.margin, distance=args.distance, use_gpu=use_gpu) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma) start_epoch = args.start_epoch if use_gpu: model = nn.DataParallel(model).cuda() start_time = time.time() train_time = 0 best_rank1 = -np.inf best_epoch = 0 print("==> Start training") for epoch in range(start_epoch, args.max_epoch): start_train_time = time.time() train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu) train_time += round(time.time() - start_train_time) scheduler.step() if (epoch + 1) >= args.start_eval and ( epoch + 1) % args.eval_step == 0 or epoch == 0: print("==> Test") with torch.no_grad(): rank1 = test(model, queryloader, galleryloader, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint( { 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')) print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format( best_rank1, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print( "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.". format(elapsed, train_time))
def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False sys.stdout = Logger(osp.join(args.save_dir, 'log_test1.txt'), mode='a') print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_dataset(name=args.dataset) # Data augmentation spatial_transform_test = ST.Compose([ ST.Scale((args.height, args.width), interpolation=3), ST.ToTensor(), ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) temporal_transform_test = None pin_memory = True if use_gpu else False queryloader = DataLoader(VideoDataset( dataset.query, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test), batch_size=1, shuffle=False, num_workers=0, pin_memory=pin_memory, drop_last=False) galleryloader = DataLoader(VideoDataset( dataset.gallery, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test), batch_size=1, shuffle=False, num_workers=0, pin_memory=pin_memory, drop_last=False) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, use_gpu=use_gpu, num_classes=dataset.num_train_pids, loss={'xent', 'htri'}) if args.resume: print("Loading checkpoint from '{}'".format(args.resume)) checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) if use_gpu: model = nn.DataParallel(model).cuda() model.eval() with torch.no_grad(): evaluation(model, args, queryloader, galleryloader, use_gpu)
def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_dataset(name=args.dataset) transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = False trainloader = DataLoader( VideoDataset(dataset.train, seq_len=args.seq_len, sample='random', transform=transform_train), sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader( VideoDataset(dataset.query, seq_len=args.seq_len, sample='dense', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='dense', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'}) print("Model size: {:.5f}M".format( sum(p.numel() for p in model.parameters()) / 1000000.0)) criterion_xent = CrossEntropyLabelSmooth( num_classes=dataset.num_train_pids, use_gpu=use_gpu) criterion_htri = TripletLoss(margin=args.margin) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) if args.stepsize > 0: scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma) start_epoch = args.start_epoch start_time = time.time() print(start_time) for batch_idx, (imgs, pids, _) in enumerate(trainloader): print(batch_idx) print('x') if use_gpu: imgs, pids = imgs.cuda(), pids.cuda() imgs, pids = Variable(imgs), Variable(pids) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def main(): runId = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') cfg.OUTPUT_DIR = os.path.join(cfg.OUTPUT_DIR, runId) if not os.path.exists(cfg.OUTPUT_DIR): os.mkdir(cfg.OUTPUT_DIR) print(cfg.OUTPUT_DIR) torch.manual_seed(cfg.RANDOM_SEED) random.seed(cfg.RANDOM_SEED) np.random.seed(cfg.RANDOM_SEED) os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID use_gpu = torch.cuda.is_available() and cfg.MODEL.DEVICE == "cuda" if not cfg.EVALUATE_ONLY: sys.stdout = Logger(osp.join(cfg.OUTPUT_DIR, 'log_train.txt')) else: sys.stdout = Logger(osp.join(cfg.OUTPUT_DIR, 'log_test.txt')) print("==========\nConfigs:{}\n==========".format(cfg)) if use_gpu: print("Currently using GPU {}".format(cfg.MODEL.DEVICE_ID)) cudnn.benchmark = True torch.cuda.manual_seed_all(cfg.RANDOM_SEED) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(cfg.DATASETS.NAME)) dataset = data_manager.init_dataset(root=cfg.DATASETS.ROOT_DIR, name=cfg.DATASETS.NAME) print("Initializing model: {}".format(cfg.MODEL.NAME)) if cfg.MODEL.ARCH == 'video_baseline': torch.backends.cudnn.benchmark = False model = models.init_model(name=cfg.MODEL.ARCH, num_classes=625, pretrain_choice=cfg.MODEL.PRETRAIN_CHOICE, last_stride=cfg.MODEL.LAST_STRIDE, neck=cfg.MODEL.NECK, model_name=cfg.MODEL.NAME, neck_feat=cfg.TEST.NECK_FEAT, model_path=cfg.MODEL.PRETRAIN_PATH) print("Model size: {:.5f}M".format( sum(p.numel() for p in model.parameters()) / 1000000.0)) transform_train = T.Compose([ T.Resize(cfg.INPUT.SIZE_TRAIN), T.RandomHorizontalFlip(p=cfg.INPUT.PROB), T.Pad(cfg.INPUT.PADDING), T.RandomCrop(cfg.INPUT.SIZE_TRAIN), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), T.RandomErasing(probability=cfg.INPUT.RE_PROB, mean=cfg.INPUT.PIXEL_MEAN) ]) transform_test = T.Compose([ T.Resize(cfg.INPUT.SIZE_TEST), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) pin_memory = True if use_gpu else False cfg.DATALOADER.NUM_WORKERS = 0 trainloader = DataLoader(VideoDataset( dataset.train, seq_len=cfg.DATASETS.SEQ_LEN, sample=cfg.DATASETS.TRAIN_SAMPLE_METHOD, transform=transform_train, dataset_name=cfg.DATASETS.NAME), sampler=RandomIdentitySampler( dataset.train, num_instances=cfg.DATALOADER.NUM_INSTANCE), batch_size=cfg.SOLVER.SEQS_PER_BATCH, num_workers=cfg.DATALOADER.NUM_WORKERS, pin_memory=pin_memory, drop_last=True) queryloader = DataLoader(VideoDataset( dataset.query, seq_len=cfg.DATASETS.SEQ_LEN, sample=cfg.DATASETS.TEST_SAMPLE_METHOD, transform=transform_test, max_seq_len=cfg.DATASETS.TEST_MAX_SEQ_NUM, dataset_name=cfg.DATASETS.NAME), batch_size=cfg.TEST.SEQS_PER_BATCH, shuffle=False, num_workers=cfg.DATALOADER.NUM_WORKERS, pin_memory=pin_memory, drop_last=False) galleryloader = DataLoader( VideoDataset(dataset.gallery, seq_len=cfg.DATASETS.SEQ_LEN, sample=cfg.DATASETS.TEST_SAMPLE_METHOD, transform=transform_test, max_seq_len=cfg.DATASETS.TEST_MAX_SEQ_NUM, dataset_name=cfg.DATASETS.NAME), batch_size=cfg.TEST.SEQS_PER_BATCH, shuffle=False, num_workers=cfg.DATALOADER.NUM_WORKERS, pin_memory=pin_memory, drop_last=False, ) if cfg.MODEL.SYN_BN: if use_gpu: model = nn.DataParallel(model) if cfg.SOLVER.FP_16: model = apex.parallel.convert_syncbn_model(model) model.cuda() start_time = time.time() xent = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids) tent = TripletLoss(cfg.SOLVER.MARGIN) optimizer = make_optimizer(cfg, model) scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR, cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD) # metrics = test(model, queryloader, galleryloader, cfg.TEST.TEMPORAL_POOL_METHOD, use_gpu) no_rise = 0 best_rank1 = 0 start_epoch = 0 for epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCHS): # if no_rise == 10: # break scheduler.step() print("noriase:", no_rise) print("==> Epoch {}/{}".format(epoch + 1, cfg.SOLVER.MAX_EPOCHS)) print("current lr:", scheduler.get_lr()[0]) train(model, trainloader, xent, tent, optimizer, use_gpu) if cfg.SOLVER.EVAL_PERIOD > 0 and ( (epoch + 1) % cfg.SOLVER.EVAL_PERIOD == 0 or (epoch + 1) == cfg.SOLVER.MAX_EPOCHS): print("==> Test") metrics = test(model, queryloader, galleryloader, cfg.TEST.TEMPORAL_POOL_METHOD, use_gpu) rank1 = metrics[0] if rank1 > best_rank1: best_rank1 = rank1 no_rise = 0 else: no_rise += 1 continue if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() torch.save( state_dict, osp.join( cfg.OUTPUT_DIR, "rank1_" + str(rank1) + '_checkpoint_ep' + str(epoch + 1) + '.pth')) # best_p = osp.join(cfg.OUTPUT_DIR, "rank1_" + str(rank1) + '_checkpoint_ep' + str(epoch + 1) + '.pth') elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def main(): torch.manual_seed(args.seed) # 为CPU设置种子用于生成随机数,以使得结果是确定的 os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices # 在代码中指定需要使用的GPU use_gpu = torch.cuda.is_available() # 查看当前环境是否支持CUDA,支持返回true,不支持返回false if args.use_cpu: use_gpu = False if not args.evaluate: # 如果不是评估,那就是训练,输出训练日志;否则输出测试日志。 sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) # 打印所有参数 if use_gpu: # 如果使用gpu,输出选定的gpu, print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True # 在程序刚开始加这条语句可以提升一点训练速度,没什么额外开销 torch.cuda.manual_seed_all(args.seed) # 为GPU设置种子用于生成随机数,以使得结果是确定的 else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_dataset(name=args.dataset) # 初始化数据集,从data_manager.py文件中加载。 # import transforms as T. # T.Compose=一起组合几个变换。 transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), # 以一个概率进行,首先将图像大小增加到(1 + 1/8),然后执行随机裁剪。 T.RandomHorizontalFlip(), # 以给定的概率(0.5)随机水平翻转给定的PIL图像。 T.ToTensor(), # 将``PIL Image``或``numpy.ndarray``转换为张量。 T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # 用平均值和标准偏差归一化张量图像。 # input[channel] = (input[channel] - mean[channel]) / std[channel] ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), # 将输入PIL图像的大小调整为给定大小。 T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # 设置pin_memory=True,则意味着生成的Tensor数据最开始是属于内存中的锁页内存,这样将内存的Tensor转义到GPU的显存就会更快一些。 pin_memory = True if use_gpu else False # DataLoader数据加载器。 组合数据集和采样器,并在数据集上提供单进程或多进程迭代器。 trainloader = DataLoader( # VideoDataset:基于视频的person reid的数据集.(训练的数据集,视频序列长度,采样方法:随机,进行数据增强) VideoDataset(dataset.train, seq_len=args.seq_len, sample='random', transform=transform_train), # 随机抽样N个身份,然后对于每个身份,随机抽样K个实例,因此批量大小为N * K. sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, # 训练的批次大小 num_workers=args.workers, # 多进程的数目 pin_memory=pin_memory, drop_last=True, ) # 如果数据集大小不能被批量大小整除,则设置为“True”以删除最后一个不完整的批次。 queryloader = DataLoader( VideoDataset(dataset.query, seq_len=args.seq_len, sample='dense', transform=transform_test), batch_size=args.test_batch, shuffle=False, # 设置为“True”以使数据在每个时期重新洗牌(默认值:False)。 num_workers=args.workers, pin_memory=pin_memory, drop_last=False, # 如果“False”和数据集的大小不能被批量大小整除,那么最后一批将更小。 ) galleryloader = DataLoader( VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='dense', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) # 模型的初始化 if args.arch == 'resnet503d': model = resnet3d.resnet50(num_classes=dataset.num_train_pids, sample_width=args.width, sample_height=args.height, sample_duration=args.seq_len) # 如果不存在预训练模型,则报错 if not os.path.exists(args.pretrained_model): raise IOError("Can't find pretrained model: {}".format(args.pretrained_model)) # 导入预训练的模型 print("Loading checkpoint from '{}'".format(args.pretrained_model)) checkpoint = torch.load(args.pretrained_model) state_dict = {} # 状态字典,从checkpoint文件中加载参数 for key in checkpoint['state_dict']: if 'fc' in key: continue state_dict[key.partition("module.")[2]] = checkpoint['state_dict'][key] model.load_state_dict(state_dict, strict=False) else: model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'}) print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters())/1000000.0)) # 损失函数:xent:softmax交叉熵损失函数。htri:三元组损失函数。 criterion_xent = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu) criterion_htri = TripletLoss(margin=args.margin) # 优化器:adam optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # stepsize,逐步减少学习率(> 0表示已启用) if args.stepsize > 0: scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma) # lr_scheduler学习率计划,StepLR,将每个参数组的学习速率设置为每个步长时期由gamma衰减的初始lr. start_epoch = args.start_epoch # 手动时期编号(重启时有用) if use_gpu: model = nn.DataParallel(model).cuda() # 多GPU训练 # DataParallel是torch.nn下的一个类,需要制定的参数是module(可以多gpu运行的类函数)和input(数据集) if args.evaluate: # 这里的evaluate没有意义,应该添加代码导入保存的checkpoint,再test print("Evaluate only") # 进行评估 test(model, queryloader, galleryloader, args.pool, use_gpu) return start_time = time.time() # 开始的时间 best_rank1 = -np.inf # 初始化,负无穷 if args.arch == 'resnet503d': # 如果模型为resnet503d, torch.backends.cudnn.benchmark = False for epoch in range(start_epoch, args.max_epoch): # epoch,从开始到最大,进行训练。 print("==> Epoch {}/{}".format(epoch+1, args.max_epoch)) train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu) if args.stepsize > 0: scheduler.step() # 如果运行一次评估的需要的epoch数大于0,并且当前epoch+1能整除这个epoch数,或者等于最大epoch数。那么就进行一次评估。 if args.eval_step > 0 and (epoch+1) % args.eval_step == 0 or (epoch+1) == args.max_epoch: print("==> Test") rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu) is_best = rank1 > best_rank1 # 比较,大于则返回true,否则返回false。 if is_best: best_rank1 = rank1 if use_gpu: state_dict = model.module.state_dict() # 函数static_dict()用于返回包含模块所有状态的字典,包括参数和缓存。 else: state_dict = model.state_dict() # 保存checkpoint文件 save_checkpoint({ 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch+1) + '.pth.tar')) # 经过的时间 elapsed = round(time.time() - start_time) # round() 方法返回浮点数x的四舍五入值 elapsed = str(datetime.timedelta(seconds=elapsed)) # 对象代表两个时间之间的时间差, print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def attr_main(): runId = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') args.save_dir = os.path.join(args.save_dir, runId) if not os.path.exists(args.save_dir): os.mkdir(args.save_dir) print(args.save_dir) torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False if not args.evaluate: sys.stdout = Logger('./log_train_' + runId + '.txt') else: sys.stdout = Logger('./log_test_' + runId + '.txt') print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_dataset(name=args.dataset, min_seq_len=args.seq_len, attr=True) args.attr_lens = dataset.attr_lens args.columns = dataset.columns print("Initializing model: {}".format(args.arch)) # if args.arch == "resnet50ta_attr" or args.arch == "resnet50ta_attr_newarch": if args.arch == 'attr_resnet503d': model = models.init_model(name=args.arch, attr_lens=args.attr_lens, model_type=args.model_type, num_classes=dataset.num_train_pids, sample_width=args.width, sample_height=args.height, sample_duration=args.seq_len) torch.backends.cudnn.benchmark = False else: model = models.init_model(name=args.arch, attr_lens=args.attr_lens, model_type=args.model_type) print("Model size: {:.5f}M".format( sum(p.numel() for p in model.parameters()) / 1000000.0)) if args.dataset == "duke": transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), # T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) elif args.dataset == "mars": transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) pin_memory = True if use_gpu else False trainloader = DataLoader( VideoDataset(dataset.train, seq_len=args.seq_len, sample='random', transform=transform_train, attr=True, attr_loss=args.attr_loss, attr_lens=args.attr_lens), sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = VideoDataset(dataset.query + dataset.gallery, seq_len=args.seq_len, sample='dense', transform=transform_test, attr=True, attr_loss=args.attr_loss, attr_lens=args.attr_lens) start_epoch = args.start_epoch if use_gpu: model = nn.DataParallel(model).cuda() start_time = time.time() if args.arch == 'resnet503d': torch.backends.cudnn.benchmark = False # print("Run attribute pre-training") if args.attr_loss == "cropy": criterion = nn.CrossEntropyLoss() elif args.attr_loss == "mse": criterion = nn.MSELoss() if args.evaluate: print("Evaluate only") model_root = "/data/chenzy/models/mars/2019-02-26_21-02-13" model_paths = [] for m in os.listdir(model_root): if m.endswith("pth"): model_paths.append(m) model_paths = sorted(model_paths, key=lambda a: float(a.split("_")[1]), reverse=True) # model_paths = ['rank1_2.8755379380596713_checkpoint_ep500.pth'] for m in model_paths: model_path = os.path.join(model_root, m) print(model_path) old_weights = torch.load(model_path) new_weights = model.module.state_dict() for k in new_weights: if k in old_weights: new_weights[k] = old_weights[k] model.module.load_state_dict(new_weights) avr_acc = attr_test(model, criterion, queryloader, use_gpu) # break # test(model, queryloader, galleryloader, args.pool, use_gpu) return if use_gpu: optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.module.parameters()), lr=args.lr, weight_decay=args.weight_decay) else: optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.weight_decay) # avr_acc = attr_test(model, criterion, queryloader, use_gpu) if args.stepsize > 0: scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma) best_avr = 0 no_rise = 0 for epoch in range(start_epoch, args.max_epoch): print("==> Epoch {}/{}".format(epoch + 1, args.max_epoch)) attr_train(model, criterion, optimizer, trainloader, use_gpu) if args.stepsize > 0: scheduler.step() if args.eval_step > 0 and ((epoch + 1) % (args.eval_step) == 0 or (epoch + 1) == args.max_epoch): avr_acc = attr_test(model, criterion, queryloader, use_gpu) print("avr", avr_acc) if avr_acc > best_avr: no_rise = 0 print("==> Test") best_avr = avr_acc if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() torch.save( state_dict, osp.join( args.save_dir, "avr_" + str(avr_acc) + '_checkpoint_ep' + str(epoch + 1) + '.pth')) else: no_rise += 1 print("no_rise:", no_rise) if no_rise > 20: break elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))