Esempio n. 1
0
 def testTrainingLossIsNotNan(self):
   """Tests a minimal Keras training loop for the dynamics model."""
   observed_keypoints = np.random.RandomState(0).normal(size=(
       self.cfg.batch_size, self.cfg.observed_steps + self.cfg.predicted_steps,
       self.cfg.num_keypoints, 3))
   model = dynamics.build_vrnn(self.cfg)
   model.add_loss(tf.nn.l2_loss(model.inputs[0] - model.outputs[0]))  # KP loss
   model.add_loss(tf.reduce_mean(model.outputs[1]))  # KL loss
   model.compile(tf.keras.optimizers.Adam(lr=1e-5))
   history = model.fit(x=observed_keypoints, steps_per_epoch=1, epochs=1)
   self.assertFalse(
       np.any(np.isnan(history.history['loss'])),
       'Loss contains nans: {}'.format(history.history['loss']))
Esempio n. 2
0
def build_model(cfg, data_shapes):
    """Builds the complete model with image encoder plus dynamics model.

  This architecture is meant for testing/illustration only.

  Model architecture:

    image_sequence --> keypoints --> reconstructed_image_sequence
                          |
                          V
                    dynamics_model --> predicted_keypoints

  The model takes a [batch_size, timesteps, H, W, C] image sequence as input. It
  "observes" all frames, detects keypoints, and reconstructs the images. The
  dynamics model learns to predict future keypoints based on the detected
  keypoints.

  Args:
    cfg: ConfigDict with model hyperparameters.
    data_shapes: Dict of shapes of model input tensors, as returned by
      datasets.get_sequence_dataset.
  Returns:
    tf.keras.Model object.
  """
    input_shape_no_batch = data_shapes['image'][
        1:]  # Keras uses shape w/o batch.
    input_images = tf.keras.Input(shape=input_shape_no_batch, name='image')

    # Vision model:
    observed_keypoints, _ = vision.build_images_to_keypoints_net(
        cfg, input_shape_no_batch)(input_images)
    keypoints_to_images_net = vision.build_keypoints_to_images_net(
        cfg, input_shape_no_batch)
    reconstructed_images = keypoints_to_images_net([
        observed_keypoints, input_images[:, 0, Ellipsis],
        observed_keypoints[:, 0, Ellipsis]
    ])

    # Dynamics model:
    observed_keypoints_stop = tf.keras.layers.Lambda(
        tf.stop_gradient)(observed_keypoints)
    dynamics_model = dynamics.build_vrnn(cfg)
    predicted_keypoints, kl_divergence = dynamics_model(
        observed_keypoints_stop)

    model = tf.keras.Model(inputs=[input_images],
                           outputs=[
                               reconstructed_images, observed_keypoints,
                               predicted_keypoints
                           ],
                           name='autoencoder')

    # Losses:
    image_loss = tf.nn.l2_loss(input_images - reconstructed_images)
    # Normalize by batch size and sequence length:
    image_loss /= tf.to_float(
        tf.shape(input_images)[0] * tf.shape(input_images)[1])
    model.add_loss(image_loss)

    separation_loss = losses.temporal_separation_loss(
        cfg, observed_keypoints[:, :cfg.observed_steps, Ellipsis])
    model.add_loss(cfg.separation_loss_scale * separation_loss)

    vrnn_coord_pred_loss = tf.nn.l2_loss(observed_keypoints_stop -
                                         predicted_keypoints)

    # Normalize by batch size and sequence length:
    vrnn_coord_pred_loss /= tf.to_float(
        tf.shape(input_images)[0] * tf.shape(input_images)[1])
    model.add_loss(vrnn_coord_pred_loss)

    kl_loss = tf.reduce_mean(kl_divergence)  # Mean over batch and timesteps.
    model.add_loss(cfg.kl_loss_scale * kl_loss)

    return model