def __init__(self, ckpt_path=None, gpu='0'): print('Classifier_Vietocr. Init') self.config = Cfg.load_config(cls_base_config_path, cls_config_path) if ckpt_path is not None: self.config['weights'] = ckpt_path self.config['cnn']['pretrained'] = False if gpu is not None: self.config['device'] = 'cuda:' + str(gpu) else: self.config['device'] = 'cpu' self.config['predictor']['beamsearch'] = False self.model = Predictor(self.config)
def __init__(self): self.yolo = YOLOv4() self.yolo.classes = './coco.names' self.yolo.make_model() self.yolo.load_weights("./model/yolov4-custom_last.weights", weights_type="yolo") self.config = Cfg.load_config() self.config['weights'] = './model/transformerocr.pth' self.config['predictor']['beamsearch'] = False self.config['device'] = 'cpu' self.detector = Predictor(self.config) self.classes = ['id', 'name', 'dmy', 'add1', 'add2'] self.res = dict.fromkeys(self.classes, '')