def setUp(self): if skip_all: raise nose.SkipTest() self.xv = ContestCrossValid( n_train=ContestCrossValid.max_n_train - 7500, n_valid=7500, ds=ds)
def test_protocol_svm(self): if 'sklearn' not in globals(): raise nose.SkipTest() self.xv = ContestCrossValid( n_train=200, n_valid=100, ds=ds) algo = SklearnClassifier( partial(sklearn.svm.SVC, kernel='linear')) self.xv.protocol(algo) print algo.results
class TestContestXV(TestCase): def setUp(self): if skip_all: raise nose.SkipTest() self.xv = ContestCrossValid( n_train=ContestCrossValid.max_n_train - 7500, n_valid=7500, ds=ds) def test_protocol_smoke(self): # -- smoke test that it just runs class Algo(object): def best_model(algo_self, train, valid=None): # -- all training labels should be legit assert np.all(train.all_labels[train.idxs] < 7) assert np.all(train.all_labels[train.idxs] >= 0) # -- N.B. test labels might be unknown, and # replaced with dummy ones which may or may # not be in range(7) return None def loss(algo_self, model, task): return 1.0 algo = Algo() self.xv.protocol(algo) def test_protocol_svm(self): if 'sklearn' not in globals(): raise nose.SkipTest() self.xv = ContestCrossValid( n_train=200, n_valid=100, ds=ds) algo = SklearnClassifier( partial(sklearn.svm.SVC, kernel='linear')) self.xv.protocol(algo) print algo.results