Esempio n. 1
0
    def setupOutputs(self):
        self.fileNameList = []
        globStrings = self.globstring.value

        # Parse list into separate globstrings and combine them
        for globString in sorted(globStrings.split("//")):
            self.fileNameList += sorted(glob.glob(globString))

        num_files = len(self.fileNameList)
        if len(self.fileNameList) == 0:
            self.stack.meta.NOTREADY = True
            return
        try:
            self.info = vigra.impex.ImageInfo(self.fileNameList[0])
            self.slices_per_file = vigra.impex.numberImages(self.fileNameList[0])
        except RuntimeError:
            raise OpStackLoader.FileOpenError(self.fileNameList[0])

        slice_shape = self.info.getShape()
        X, Y, C = slice_shape
        if self.slices_per_file == 1:
            # If this is a stack of 2D images, we assume xy slices stacked along z
            Z = num_files
            shape = (Z, Y, X, C)
            axistags = vigra.defaultAxistags('zyxc')
        else:
            # If it's a stack of 3D volumes, we assume xyz blocks stacked along t
            T = num_files
            Z = self.slices_per_file
            shape = (T, Z, Y, X, C)
            axistags = vigra.defaultAxistags('tzyxc')
            
        self.stack.meta.shape = shape
        self.stack.meta.axistags = axistags
        self.stack.meta.dtype = self.info.getDtype()
Esempio n. 2
0
    def _get_template_dataset_infos(self, input_axes=None):
        """
        Sometimes the default settings for an input file are not suitable (e.g. the axistags need to be changed).
        We assume the LAST non-batch input in the workflow has settings that will work for all batch processing inputs.
        Here, we get the DatasetInfo objects from that lane and store them as 'templates' to modify for all batch-processing files.
        """
        template_infos = {}

        # If there isn't an available dataset to use as a template
        if len(self.dataSelectionApplet.topLevelOperator.DatasetGroup) == 0:
            num_roles = len(self.dataSelectionApplet.topLevelOperator.DatasetRoles.value)
            for role_index in range(num_roles):
                template_infos[role_index] = DatasetInfo()
                template_infos[role_index].axistags = vigra.defaultAxistags(input_axes)
            return template_infos

        # Use the LAST non-batch input file as our 'template' for DatasetInfo settings (e.g. axistags)
        template_lane = len(self.dataSelectionApplet.topLevelOperator.DatasetGroup) - 1
        opDataSelectionTemplateView = self.dataSelectionApplet.topLevelOperator.getLane(template_lane)

        for role_index, info_slot in enumerate(opDataSelectionTemplateView.DatasetGroup):
            if info_slot.ready():
                template_infos[role_index] = info_slot.value
            else:
                template_infos[role_index] = DatasetInfo()
            if input_axes:
                # Support the --input_axes arg to override input axis order, same as DataSelection applet.
                template_infos[role_index].axistags = vigra.defaultAxistags(input_axes)
        return template_infos
Esempio n. 3
0
 def setUp(self):
     self.data2d = numpy.zeros((3, 3, 3))
     self.data2d[:, :, 0] = 1
     self.data2d[:, :, 1] = 2
     self.data2d[:, :, 2] = 3
     
     self.data2d = self.data2d.view(vigra.VigraArray)
     self.data2d.axistags = vigra.defaultAxistags("xyc")
     
     
     self.data3d = numpy.zeros((3, 3, 3, 3))
     self.data3d[:, :, :, 0] = 1
     self.data3d[:, :, :, 1] = 2
     self.data3d[:, :, :, 2] = 3
     
     self.data3d = self.data3d.view(vigra.VigraArray)
     self.data3d.axistags = vigra.defaultAxistags("xyzc")
     
     self.data_bad_channel = numpy.zeros((3, 3, 3, 3))
     self.data_bad_channel[:, :, 0, :] = 1
     self.data_bad_channel[:, :, 1, :] = 2
     self.data_bad_channel[:, :, 2, :] = 3
     
     self.data_bad_channel = self.data_bad_channel.view(vigra.VigraArray)
     self.data_bad_channel.axistags = vigra.defaultAxistags("xycz")
Esempio n. 4
0
    def setupOutputs(self):
        self.fileNameList = self.expandGlobStrings(self.globstring.value)

        num_files = len(self.fileNameList)
        if len(self.fileNameList) == 0:
            self.stack.meta.NOTREADY = True
            return
        try:
            self.info = vigra.impex.ImageInfo(self.fileNameList[0])
            self.slices_per_file = vigra.impex.numberImages(self.fileNameList[0])
        except RuntimeError as e:
            logger.error(str(e))
            raise OpStackLoader.FileOpenError(self.fileNameList[0])

        slice_shape = self.info.getShape()
        X, Y, C = slice_shape
        if self.slices_per_file == 1:
            # If this is a stack of 2D images, we assume xy slices stacked along z
            Z = num_files
            shape = (Z, Y, X, C)
            axistags = vigra.defaultAxistags('zyxc')
        else:
            # If it's a stack of 3D volumes, we assume xyz blocks stacked along t
            T = num_files
            Z = self.slices_per_file
            shape = (T, Z, Y, X, C)
            axistags = vigra.defaultAxistags('tzyxc')
            
        self.stack.meta.shape = shape
        self.stack.meta.axistags = axistags
        self.stack.meta.dtype = self.info.getDtype()
Esempio n. 5
0
    def testChangeBlockshape_masked(self):
        logger.info("Generating sample data...")
        sampleData = numpy.indices((100, 200, 150), dtype=numpy.float32).sum(0)
        sampleData = sampleData.view(numpy.ma.masked_array)
        sampleData.set_fill_value(numpy.float32(numpy.nan))
        sampleData[0] = numpy.ma.masked

        graph = Graph()
        opData = OpArrayPiper(graph=graph)
        opData.Input.meta.has_mask = True
        opData.Input.meta.axistags = vigra.defaultAxistags("xyz")
        opData.Input.setValue(sampleData)

        op = OpCompressedCache(parent=None, graph=graph)
        # logger.debug("Setting block shape...")
        op.BlockShape.setValue([100, 75, 50])
        op.Input.connect(opData.Output)

        assert op.Output.ready()

        slicing = numpy.s_[0:100, 50:150, 75:150]
        expectedData = sampleData[slicing]

        # logger.debug("Requesting data...")
        readData = op.Output[slicing].wait()

        # logger.debug("Checking data...")
        assert (
            (readData == expectedData).all()
            and (readData.mask == expectedData.mask).all()
            and (
                (readData.fill_value == expectedData.fill_value)
                | (numpy.isnan(readData.fill_value) & numpy.isnan(expectedData.fill_value))
            ).all()
        ), "Incorrect output!"

        # Now change the blockshape and the input and try again...
        sampleDataWithChannel = sampleData[..., None]
        opData.Input.meta.axistags = vigra.defaultAxistags("xyzc")
        opData.Input.setValue(sampleDataWithChannel)
        op.BlockShape.setValue([45, 33, 40, 1])

        assert op.Output.ready()

        slicing = numpy.s_[60:70, 50:110, 60:120, 0:1]
        expectedData = sampleDataWithChannel[slicing]

        # logger.debug("Requesting data...")
        readData = op.Output[slicing].wait()

        # logger.debug("Checking data...")
        assert (
            (readData == expectedData).all()
            and (readData.mask == expectedData.mask).all()
            and (
                (readData.fill_value == expectedData.fill_value)
                | (numpy.isnan(readData.fill_value) & numpy.isnan(expectedData.fill_value))
            ).all()
        ), "Incorrect output!"
Esempio n. 6
0
 def setupOutputs(self):
     # assert len(self.Input.meta.shape) == 1
     self.Output.meta.shape = (self.Input.meta.shape[0], 1)
     self.Output.meta.dtype = np.float32
     self.Output.meta.axistags = vigra.defaultAxistags('tc')
     self.Valid.meta.shape = self.Output.meta.shape[:1]
     self.Valid.meta.axistags = vigra.defaultAxistags('t')
     self.Valid.meta.dtype = np.uint8
    def setUp(self):
        if 'TRAVIS' in os.environ:
            # This test takes a long time, so skip it on Travis-CI.
            import nose
            raise nose.SkipTest

        self.scaleZ = 2
        self.scales = [0.3, 0.7, 1, 1.6, 3.5, 5.0, 10.0]
        self.featureIds = [ 'GaussianSmoothing', 'LaplacianOfGaussian',\
                   'GaussianGradientMagnitude',
                   'DifferenceOfGaussians',
                   'StructureTensorEigenvalues',
                   'HessianOfGaussianEigenvalues' ]
        
        #setup the data
        self.nx = 50
        self.ny = 50
        self.nz = 50
        self.data3d = numpy.zeros((self.nx, self.ny, self.nz, 1), dtype=numpy.float32)
        for i in range(self.data3d.shape[2]):
            self.data3d[:, :, i, 0]=i
        
        newRangeZ = self.scaleZ*(self.nz-1)+1
        self.data3dInterp = vigra.sampling.resizeVolumeSplineInterpolation(self.data3d.squeeze(), \
                                                       shape=(self.nx, self.ny, newRangeZ))
        
        self.data3dInterp = self.data3dInterp.reshape(self.data3dInterp.shape + (1,))

        self.data3d = self.data3d.view(vigra.VigraArray)
        self.data3d.axistags =  vigra.VigraArray.defaultAxistags(4)
        self.data3dInterp = self.data3dInterp.view(vigra.VigraArray)
        self.data3dInterp.axistags =  vigra.VigraArray.defaultAxistags(4)
        
        self.randomData = (numpy.random.random((self.nx, self.ny, self.nz, 1))).astype(numpy.float32)
        self.randomDataInterp = vigra.sampling.resizeVolumeSplineInterpolation(self.randomData.squeeze(), \
                                                                               shape = (self.nx, self.ny, newRangeZ))
        self.randomDataInterp = self.randomDataInterp.reshape(self.randomDataInterp.shape+(1,))
        
        self.randomData = self.randomData.view(vigra.VigraArray).astype(numpy.float32)
        self.randomData.axistags = vigra.defaultAxistags(4)
        self.randomDataInterp = self.randomDataInterp.view(vigra.VigraArray)
        self.randomDataInterp.axistags = vigra.defaultAxistags(4)
        
        #data without channels
        self.dataNoChannels = self.randomData.squeeze()
        self.dataNoChannels = self.dataNoChannels.view(vigra.VigraArray)
        self.dataNoChannels.axistags = vigra.defaultAxistags(3, noChannels=True)
        
        #setup the feature selection
        rows = 6
        cols = 7
        self.selectedFeatures = []
        #only test 1 feature 1 sigma setup for now
        for i in range(rows):
            for j in range(cols):
                features = numpy.zeros((rows,cols), dtype=bool)
                features[i, j]=True
                self.selectedFeatures.append(features)
Esempio n. 8
0
    def setupOutputs(self):
        window = self.WindowSize.value
        self.Output.meta.shape = (self.Input.meta.shape[0], window)
        self.Output.meta.axistags = vigra.defaultAxistags('tc')
        self.Output.meta.dtype = self.Input.meta.dtype

        self.Valid.meta.shape = (self.Input.meta.shape[0],)
        self.Valid.meta.axistags = vigra.defaultAxistags('t')
        self.Valid.dtype = np.uint8
Esempio n. 9
0
    def setupOutputs(self):
        assert (len(self.Input.meta.shape) <= 2 or
                np.prod(self.Input.meta.shape[1:]) == 1)
        self.Output.meta.shape = (self.Input.meta.shape[0], 1)
        self.Output.meta.axistags = vigra.defaultAxistags('tc')
        self.Output.meta.dtype = np.float32

        self.Valid.meta.shape = (self.Input.meta.shape[0],)
        self.Valid.meta.axistags = vigra.defaultAxistags('t')
        self.Valid.meta.dtype = np.uint8
    def test_2d_vigra_along_z(self):
        """Test if 2d files generated through vigra are recognized correctly"""
        # Prepare some data set for this case
        data = numpy.random.randint(0, 255, (20, 100, 200, 3)).astype(numpy.uint8)
        axistags = vigra.defaultAxistags("yxc")
        expected_axistags = vigra.defaultAxistags("zyxc")

        h5_op = OpStreamingH5N5SequenceReaderM(graph=self.graph)
        n5_op = OpStreamingH5N5SequenceReaderM(graph=self.graph)

        tempdir = tempfile.TemporaryDirectory()
        try:
            for sliceIndex, zSlice in enumerate(data):
                testDataH5FileName = f"{tempdir.name}/test-{sliceIndex:02d}.h5"
                testDataN5FileName = f"{tempdir.name}/test-{sliceIndex:02d}.n5"
                # Write the dataset to an hdf5 and a n5 file
                # (Note: Don't use vigra to do this, which may reorder the axes)
                h5File = h5py.File(testDataH5FileName)
                n5File = z5py.N5File(testDataN5FileName)
                try:
                    h5File.create_group("volume")
                    n5File.create_group("volume")

                    h5File["volume"].create_dataset("subvolume", data=zSlice)
                    n5File["volume"].create_dataset("subvolume", data=zSlice)
                    # Write the axistags attribute
                    current_path = "volume/subvolume"
                    h5File[current_path].attrs["axistags"] = axistags.toJSON()
                    n5File[current_path].attrs["axistags"] = axistags.toJSON()
                finally:
                    h5File.close()
                    n5File.close()

            # Read the data with an operator
            hdf5GlobString = f"{tempdir.name}/test-*.h5/volume/subvolume"
            n5GlobString = f"{tempdir.name}/test-*.n5/volume/subvolume"
            h5_op.SequenceAxis.setValue("z")
            n5_op.SequenceAxis.setValue("z")
            h5_op.GlobString.setValue(hdf5GlobString)
            n5_op.GlobString.setValue(n5GlobString)

            assert h5_op.OutputImage.ready()
            assert n5_op.OutputImage.ready()
            assert h5_op.OutputImage.meta.axistags == expected_axistags
            assert n5_op.OutputImage.meta.axistags == expected_axistags
            numpy.testing.assert_array_equal(
                h5_op.OutputImage.value[5:10, 50:100, 100:150], data[5:10, 50:100, 100:150]
            )
            numpy.testing.assert_array_equal(
                n5_op.OutputImage.value[5:10, 50:100, 100:150], data[5:10, 50:100, 100:150]
            )
        finally:
            h5_op.cleanUp()
            n5_op.cleanUp()
    def test_3d_vigra_along_t(self):
        """Test if 3d volumes generated through vigra are recognized correctly"""
        # Prepare some data set for this case
        data = numpy.random.randint(0, 255, (10, 15, 50, 100, 3)).astype(numpy.uint8)

        axistags = vigra.defaultAxistags("zyxc")
        expected_axistags = vigra.defaultAxistags("tzyxc")

        h5_op = OpStreamingH5N5SequenceReaderS(graph=self.graph)
        n5_op = OpStreamingH5N5SequenceReaderS(graph=self.graph)

        try:
            testDataH5FileName = f"{self.tempdir_normalized_name}/test.h5"
            testDataN5FileName = f"{self.tempdir_normalized_name}/test.n5"
            # Write the dataset to an hdf5 file
            # (Note: Don't use vigra to do this, which may reorder the axes)
            h5File = h5py.File(testDataH5FileName)
            n5File = z5py.N5File(testDataN5FileName)

            try:
                h5File.create_group("volumes")
                n5File.create_group("volumes")

                internalPathString = "subvolume-{sliceIndex:02d}"
                for sliceIndex, tSlice in enumerate(data):
                    subpath = internalPathString.format(sliceIndex=sliceIndex)
                    h5File["volumes"].create_dataset(subpath, data=tSlice)
                    n5File["volumes"].create_dataset(subpath, data=tSlice)
                    # Write the axistags attribute
                    current_path = "volumes/{}".format(subpath)
                    h5File[current_path].attrs["axistags"] = axistags.toJSON()
                    n5File[current_path].attrs["axistags"] = axistags.toJSON()
            finally:
                h5File.close()
                n5File.close()

            # Read the data with an operator
            hdf5GlobString = f"{testDataH5FileName}/volumes/subvolume-*"
            n5GlobString = f"{testDataN5FileName}/volumes/subvolume-*"
            h5_op.SequenceAxis.setValue("t")
            n5_op.SequenceAxis.setValue("t")
            h5_op.GlobString.setValue(hdf5GlobString)
            n5_op.GlobString.setValue(n5GlobString)

            assert h5_op.OutputImage.ready()
            assert n5_op.OutputImage.ready()
            assert h5_op.OutputImage.meta.axistags == expected_axistags
            assert n5_op.OutputImage.meta.axistags == expected_axistags
            numpy.testing.assert_array_equal(h5_op.OutputImage.value, data)
            numpy.testing.assert_array_equal(n5_op.OutputImage.value, data)
        finally:
            h5_op.cleanUp()
            n5_op.cleanUp()
Esempio n. 12
0
    def setupOutputs(self):
        self.fileNameList = self.expandGlobStrings(self.globstring.value)

        num_files = len(self.fileNameList)
        if len(self.fileNameList) == 0:
            self.stack.meta.NOTREADY = True
            return
        try:
            self.info = vigra.impex.ImageInfo(self.fileNameList[0])
            self.slices_per_file = vigra.impex.numberImages(self.fileNameList[0])
        except RuntimeError as e:
            logger.error(str(e))
            raise OpStackLoader.FileOpenError(self.fileNameList[0]) from e

        slice_shape = self.info.getShape()
        X, Y, C = slice_shape
        if self.slices_per_file == 1:
            if self.SequenceAxis.ready():
                sequence_axis = str(self.SequenceAxis.value)
                assert sequence_axis in "tzc"
            else:
                sequence_axis = "z"
            # For stacks of 2D images, we assume xy slices
            if sequence_axis == "c":
                shape = (X, Y, C * num_files)
                axistags = vigra.defaultAxistags("xyc")
            else:
                shape = (num_files, Y, X, C)
                axistags = vigra.defaultAxistags(sequence_axis + "yxc")
        else:
            if self.SequenceAxis.ready():
                sequence_axis = self.SequenceAxis.value
                assert sequence_axis in "tzc"
            else:
                sequence_axis = "t"

            if sequence_axis == "z":
                axistags = vigra.defaultAxistags("ztyxc")
            elif sequence_axis == "t":
                axistags = vigra.defaultAxistags("tzyxc")
            else:
                axistags = vigra.defaultAxistags("czyx")

            # For stacks of 3D volumes, we assume xyz blocks stacked along
            # sequence_axis
            if sequence_axis == "c":
                shape = (num_files * C, self.slices_per_file, Y, X)
            else:
                shape = (num_files, self.slices_per_file, Y, X, C)

        self.stack.meta.shape = shape
        self.stack.meta.axistags = axistags
        self.stack.meta.dtype = self.info.getDtype()
 def setUp(self):
     self.delta = numpy.zeros((19, 19, 19, 1), dtype=numpy.float32)
     self.delta[9, 9, 9, 0]=1
     self.delta = self.delta.view(vigra.VigraArray)
     self.delta.axistags = vigra.defaultAxistags(4)
     
     self.dataShape = ((100, 100, 100, 1))
     self.randomData = (numpy.random.random(self.dataShape) * 100).astype(int)
     self.randomData = self.randomData.view(vigra.VigraArray)
     self.randomData.axistags = vigra.defaultAxistags(4)
     
     self.anisotropicSigmas = [(3, 3, 1), (1.6, 1.6, 1)]
     self.isotropicSigmasTuple = [(3, 3, 3), (1, 1, 1)]
     self.isotropicSigmas = [3, 1]
    def test1(self):
        superpixels = generate_random_voronoi((100,200), 200)
        superpixels.axistags = vigra.defaultAxistags('yx')

        feature_names = ['edgeregion_edge_regionradii']

        rag = Rag( superpixels )
        acc = EdgeRegionEdgeAccumulator(rag, feature_names)
        features_df = rag.compute_features(None, feature_names, accumulator_set=[acc])
        radii = features_df[features_df.columns.values[2:]].values
        assert (radii[:,0] >= radii[:,1]).all()
 
        # Transpose superpixels and check again
        # Should match (radii are sorted by magnitude).
        superpixels.axistags = vigra.defaultAxistags('xy')
        rag = Rag( superpixels )
        acc = EdgeRegionEdgeAccumulator(rag, feature_names)

        transposed_features_df = rag.compute_features(None, feature_names, accumulator_set=[acc])
        transposed_radii = transposed_features_df[transposed_features_df.columns.values[2:]].values

        assert (transposed_features_df[['sp1', 'sp1']].values == features_df[['sp1', 'sp1']].values).all()
        
        DEBUG = False
        if DEBUG:
            count_features = rag.compute_features(None, ['standard_edge_count', 'standard_sp_count'])
    
            import pandas as pd
            combined_features_df = pd.merge(features_df, transposed_features_df, how='left', on=['sp1', 'sp2'], suffixes=('_orig', '_transposed'))
            combined_features_df = pd.merge(combined_features_df, count_features, how='left', on=['sp1', 'sp2'])
            
            problem_rows = np.logical_or(np.isclose(radii[:, 0], transposed_radii[:, 0]) != 1,
                                         np.isclose(radii[:, 1], transposed_radii[:, 1]) != 1)
            problem_df = combined_features_df.loc[problem_rows][sorted(list(combined_features_df.columns))]
            print(problem_df.transpose())
            
            debug_sp = np.zeros_like(superpixels, dtype=np.uint8)
            for sp1 in problem_df['sp1'].values:
                debug_sp[superpixels == sp1] = 128
            for sp2 in problem_df['sp2'].values:
                debug_sp[superpixels == sp2] = 255
    
            vigra.impex.writeImage(debug_sp, '/tmp/debug_sp.png', dtype='NATIVE')
                
        # The first axes should all be close.
        # The second axes may differ somewhat in the case of purely linear edges,
        # so we allow a higher tolerance.
        assert np.isclose(radii[:,0], transposed_radii[:,0]).all()
        assert np.isclose(radii[:,1], transposed_radii[:,1], atol=0.001).all()
Esempio n. 15
0
    def setUp(self):
        segimg = segImage()

        rawimg = np.indices(segimg.shape).sum(0).astype(np.float32)
        rawimg = rawimg.view(vigra.VigraArray)
        rawimg.axistags = vigra.defaultAxistags('txyzc')

        feats = {"Vigra Object Features": 
                    {"Count":{}, "RegionCenter":{}, "Coord<Principal<Kurtosis>>":{}, "Coord<Minimum>":{}, "Coord<Maximum>":{}} 
                }

        g = Graph()
        self.featsop = OpRegionFeatures(graph=g)
        self.featsop.LabelImage.setValue(segimg)
        self.featsop.RawImage.setValue( rawimg )
        self.featsop.Features.setValue(feats)
        self.assertTrue(self.featsop.Output.ready(), "The output of operator {} was not ready after connections took place.".format(self.featsop))

        self._opRegFeatsAdaptOutput = OpAdaptTimeListRoi(graph=g)
        self._opRegFeatsAdaptOutput.Input.connect(self.featsop.Output)
        self.assertTrue(self._opRegFeatsAdaptOutput.Output.ready(), "The output of operator {} was not ready after connections took place.".format(self._opRegFeatsAdaptOutput))

        self.op = OpObjectTrain(graph=g)
        self.op.Features.resize(1)
        self.op.Features[0].connect(self._opRegFeatsAdaptOutput.Output)
        self.op.SelectedFeatures.setValue(feats)
        self.op.FixClassifier.setValue(False)
        self.op.ForestCount.setValue(self.nRandomForests)
    def setupOutputs(self):
        numImages = len(self.LabelInputs)

        self.PredictionsFromDisk.resize( numImages )
        self.NonzeroLabelBlocks.resize( numImages )
        self.LabelImages.resize( numImages )
        self.PredictionProbabilities.resize( numImages )
        self.opClassifier.Images.resize( numImages )

        for i in range(numImages):
            self._data.append( numpy.zeros(self.dataShape) )
            self.NonzeroLabelBlocks[i].meta.shape = (1,)
            self.NonzeroLabelBlocks[i].meta.dtype = object

            self.LabelImages[i].meta.shape = self.dataShape
            self.LabelImages[i].meta.dtype = numpy.float64
            
            # Hard-coded: Two prediction classes
            self.PredictionProbabilities[i].meta.shape = self.prediction_shape
            self.PredictionProbabilities[i].meta.dtype = numpy.float64
            self.PredictionProbabilities[i].meta.axistags = vigra.defaultAxistags('txyzc')
            
            # Classify with random data
            self.opClassifier.Images[i].setValue( numpy.random.random(self.dataShape) )
        
        self.Classifier.connect( self.opClassifier.Classifier )
Esempio n. 17
0
def testPartialAllocate():

    nx = 15
    ny = 20
    nz = 17
    nc = 7
    stack = vigra.VigraArray((nx, ny, nz, nc), axistags=vigra.defaultAxistags('xyzc'))
    stack[...] = numpy.random.rand(nx, ny, nz, nc)

    g = Graph()

    #assume that the slicer works
    slicerX = OpMultiArraySlicer(graph=g)
    slicerX.inputs["Input"].setValue(stack)
    slicerX.inputs["AxisFlag"].setValue('x')

    #insert the x dimension
    stackerX = OpMultiArrayStacker(graph=g)
    stackerX.inputs["AxisFlag"].setValue('x')
    stackerX.inputs["AxisIndex"].setValue(0)
    stackerX.inputs["Images"].connect(slicerX.outputs["Slices"])

    key = (slice(2, 3, None), slice(15, 18, None), slice(12, 15, None), slice(0, 7, None))
    newdata = stackerX.outputs["Output"][key].wait()
    substack = stack[key]
    print newdata.shape, substack.shape
    assert_array_equal(newdata, substack.view(numpy.ndarray))
    def setup(self):
        graph = Graph()
        op = OpCompressedUserLabelArray(graph=graph)
        arrayshape = (1,100,100,10,1)
        op.inputs["shape"].setValue( arrayshape )
        blockshape = (1,10,10,10,1) # Why doesn't this work if blockshape is an ndarray?
        op.inputs["blockShape"].setValue( blockshape )
        op.eraser.setValue(100)

        op.Input.meta.axistags = vigra.defaultAxistags('txyzc')
        op.Input.meta.has_mask = True
        dummyData = numpy.zeros(arrayshape, dtype=numpy.uint8)
        dummyData = numpy.ma.masked_array(dummyData, mask=numpy.ma.getmaskarray(dummyData), fill_value=numpy.uint8(0), shrink=False)
        op.Input.setValue( dummyData )

        slicing = sl[0:1, 1:15, 2:36, 3:7, 0:1]
        inDataShape = slicing2shape(slicing)
        inputData = ( 3*numpy.random.random(inDataShape) ).astype(numpy.uint8)
        inputData = numpy.ma.masked_array(inputData, mask=numpy.ma.getmaskarray(inputData), fill_value=numpy.uint8(0), shrink=False)
        inputData[:, 0] = numpy.ma.masked
        op.Input[slicing] = inputData
        data = numpy.ma.zeros(arrayshape, dtype=numpy.uint8, fill_value=numpy.uint8(0))
        data[slicing] = inputData

        self.op = op
        self.slicing = slicing
        self.inData = inputData
        self.data = data
 def create_test_files():
     tags = vigra.defaultAxistags("zyxc")
     tags['x'].resolution = 1.0
     tags['y'].resolution = 1.0
     tags['z'].resolution = 45.0
     tags['c'].description = 'intensity'
     with h5py.File(test_data_path, 'w') as f:
         f['zeros'] = numpy.zeros( (10, 100, 200, 1), dtype=numpy.uint8 )
         f['zeros'].attrs['axistags'] = tags.toJSON()
     
     import ilastik_main
     parsed_args, workflow_cmdline_args = ilastik_main.parser.parse_known_args()
     parsed_args.new_project = test_project_path
     parsed_args.workflow = "Pixel Classification"
     parsed_args.headless = True
 
     shell = ilastik_main.main(parsed_args, workflow_cmdline_args)    
     data_selection_applet = shell.workflow.dataSelectionApplet
     
     # To configure data selection, start with empty cmdline args and manually fill them in
     data_selection_args, _ = data_selection_applet.parse_known_cmdline_args([])
     data_selection_args.raw_data = [test_data_path + '/zeros']
     
     # Configure 
     data_selection_applet.configure_operator_with_parsed_args(data_selection_args)
     
     shell.projectManager.saveProject()        
     return data_selection_applet
Esempio n. 20
0
 def testBasic_Hdf5(self):
     data = numpy.random.random( (100,100) ).astype( numpy.float32 )
     data = vigra.taggedView( data, vigra.defaultAxistags('xy') )
     
     graph = Graph()
     opExport = OpExportSlot(graph=graph)
     opExport.Input.setValue(data)
     opExport.OutputFormat.setValue( 'hdf5' )
     opExport.OutputFilenameFormat.setValue( self._tmpdir + '/test_export_x{x_start}-{x_stop}_y{y_start}-{y_stop}' )
     opExport.OutputInternalPath.setValue('volume/data')
     opExport.CoordinateOffset.setValue( (10, 20) )
     
     assert opExport.ExportPath.ready()
     export_file = PathComponents( opExport.ExportPath.value ).externalPath
     assert os.path.split(export_file)[1] == 'test_export_x10-110_y20-120.h5'
     #print "exporting data to: {}".format( opExport.ExportPath.value )
     opExport.run_export()
     
     opRead = OpInputDataReader( graph=graph )
     opRead.FilePath.setValue( opExport.ExportPath.value )
     expected_data = data.view(numpy.ndarray)
     read_data = opRead.Output[:].wait()
     assert (read_data == expected_data).all(), "Read data didn't match exported data!"
     
     opRead.cleanUp()
Esempio n. 21
0
        def setupOutputs(self):
            inputAxistags = self.inputs["input"].meta.axistags
            inputShape = list(self.inputs["input"].meta.shape)
            self.resSl = [slice(0, stop, None) for stop in list(self.inputs["input"].meta.shape)]

            if self.order.ready():
                self._axisorder = self.order.value

            outputTags = vigra.defaultAxistags(self._axisorder)

            inputKeys = set(tag.key for tag in inputAxistags)
            for outputTag in outputTags:
                if outputTag.key not in inputKeys:
                    # inputAxistags.insert(outputTags.index(tag.key),tag)
                    # inputShape.insert(outputTags.index(tag.key),1)
                    self.resSl.insert(outputTags.index(outputTag.key), 0)

            outputShape = []
            for tag in outputTags:
                if tag in inputAxistags:
                    outputShape += [inputShape[inputAxistags.index(tag.key)]]
                else:
                    outputShape += [1]

            self.output.meta.assignFrom(self.input.meta)
            self.outputs["output"].meta.dtype = self.inputs["input"].meta.dtype
            self.outputs["output"].meta.shape = tuple(outputShape)
            self.outputs["output"].meta.axistags = outputTags
            if self.output.meta.original_axistags is None:
                self.output.meta.original_axistags = copy.copy(inputAxistags)
                self.output.meta.original_shape = self.input.meta.shape
                assert len(inputAxistags) == len(self.input.meta.shape)
Esempio n. 22
0
    def _write_slice(self, roi, slice_data):
        """
        Write the data from the given roi into a slice image.
        """
        step_axis = self._volume_axes[0]
        input_axes = self.Input.meta.getAxisKeys()
        tagged_roi = OrderedDict( zip( input_axes, zip( *roi ) ) )
        # e.g. tagged_roi={ 'x':(0,1), 'y':(3,4), 'z':(10,20) }
        assert tagged_roi[step_axis][1] - tagged_roi[step_axis][0] == 1,\
            "Expected roi to be a single slice."
        slice_index = tagged_roi[step_axis][0] + self.SliceIndexOffset.value
        filepattern = self.FilepathPattern.value

        # If the user didn't provide custom formatting for the slice field,
        #  auto-format to include zero-padding
        if '{slice_index}' in filepattern:
            filepattern = filepattern.format( slice_index='{' + 'slice_index:0{}'.format(self._max_slice_digits) + '}' )        
        formatted_path = filepattern.format( slice_index=slice_index )
        
        squeezed_data = slice_data.squeeze()
        squeezed_data = vigra.taggedView(squeezed_data, vigra.defaultAxistags("".join(self._volume_axes[1:])))
        assert len(squeezed_data.shape) == len(self._volume_axes)-1

        #logger.debug( "Writing slice image for roi: {}".format( roi ) )
        logger.debug("Writing slice: {}".format(formatted_path) )
        vigra.impex.writeImage( squeezed_data, formatted_path )
Esempio n. 23
0
    def testBasic_2d_Sequence(self):
        data = 255 * numpy.random.random((10, 50, 100, 3))
        data = data.astype(numpy.uint8)
        data = vigra.taggedView(data, vigra.defaultAxistags("zyxc"))

        # Must run this through an operator
        # Can't use opExport.setValue() because because OpStackWriter can't work with ValueRequests
        graph = Graph()
        opData = OpBlockedArrayCache(graph=graph)
        opData.BlockShape.setValue(data.shape)
        opData.Input.setValue(data)

        filepattern = self._tmpdir + "/test_export_x{x_start}-{x_stop}_y{y_start}-{y_stop}_z{slice_index}"
        opExport = OpExportSlot(graph=graph)
        opExport.Input.connect(opData.Output)
        opExport.OutputFormat.setValue("png sequence")
        opExport.OutputFilenameFormat.setValue(filepattern)
        opExport.CoordinateOffset.setValue((10, 20, 30, 0))

        opExport.run_export()

        export_pattern = opExport.ExportPath.value
        globstring = export_pattern.format(slice_index=999)
        globstring = globstring.replace("999", "*")

        opReader = OpStackLoader(graph=graph)
        try:
            opReader.globstring.setValue(globstring)

            assert opReader.stack.meta.shape == data.shape, "Exported files were of the wrong shape or number."
            assert (opReader.stack[:].wait() == data.view(numpy.ndarray)).all(), "Exported data was not correct"
        finally:
            opReader.cleanUp()
Esempio n. 24
0
    def _createDatasetInFile(self, hdf5File, datasetName, roi):
        shape = tuple(roi[1] - roi[0])
        chunks = self._description.chunks
        if chunks is not None:
            # chunks must not be bigger than the data in any dim
            chunks = numpy.minimum(chunks, shape)
            chunks = tuple(chunks)
        compression = self._description.compression
        compression_opts = self._description.compression_opts

        dtype = self._description.dtype
        if dtype == object:
            dtype = h5py.special_dtype(vlen=numpy.uint8)
        dataset = hdf5File.create_dataset(
            datasetName,
            shape=shape,
            dtype=dtype,
            chunks=chunks,
            compression=compression,
            compression_opts=compression_opts,
        )

        # Set data attributes
        if self._description.drange is not None:
            dataset.attrs["drange"] = self._description.drange
        if _use_vigra:
            dataset.attrs["axistags"] = vigra.defaultAxistags(str(self._description.axes)).toJSON()
Esempio n. 25
0
    def setUp(self):
        segimg = segImage()
        binimg = (segimg > 0).astype(np.uint8)
        labels = {0: np.array([0, 1, 2]), 1: np.array([0, 1, 1, 2])}

        rawimg = np.indices(segimg.shape).sum(0).astype(np.float32)
        rawimg = rawimg.view(vigra.VigraArray)
        rawimg.axistags = vigra.defaultAxistags("txyzc")

        g = Graph()

        objectExtraction.config.vigra_features = ["Count", "Mean", "Variance", "Skewness"]
        objectExtraction.config.selected_features = ["Count", "Mean", "Mean_excl", "Variance"]

        self.extrOp = OpObjectExtraction(graph=g)
        self.extrOp.BinaryImage.setValue(binimg)
        self.extrOp.RawImage.setValue(rawimg)
        assert self.extrOp.RegionFeatures.ready()

        self.classOp = OpObjectClassification(graph=g)
        self.classOp.BinaryImages.resize(1)
        self.classOp.BinaryImages.setValues([binimg])
        self.classOp.SegmentationImages.resize(1)
        self.classOp.SegmentationImages.setValues([segimg])
        self.classOp.RawImages.resize(1)
        self.classOp.RawImages.setValues([rawimg])
        self.classOp.LabelInputs.resize(1)
        self.classOp.LabelInputs.setValues([labels])
        self.classOp.LabelsAllowedFlags.resize(1)
        self.classOp.LabelsAllowedFlags.setValues([True])
        self.classOp.ObjectFeatures.connect(self.extrOp.RegionFeatures)
Esempio n. 26
0
    def setUp(self):
        segimg = segImage()
        binimg = (segimg > 0).astype(np.uint8)
        labels = {0: np.array([0, 1, 2]), 1: np.array([0, 1, 1, 2])}

        rawimg = np.indices(segimg.shape).sum(0).astype(np.float32)
        rawimg = rawimg.view(vigra.VigraArray)
        rawimg.axistags = vigra.defaultAxistags("txyzc")

        g = Graph()

        objectExtraction.config.vigra_features = ["Count", "Mean", "Variance", "Skewness"]
        objectExtraction.config.other_features = []
        objectExtraction.config.selected_features = ["Count", "Mean", "Mean_excl", "Variance"]

        self.extrOp = OpObjectExtraction(graph=g)
        self.extrOp.BinaryImage.setValue(binimg)
        self.extrOp.RawImage.setValue(rawimg)
        assert self.extrOp.RegionFeatures.ready()

        self.trainop = OpObjectTrain(graph=g)
        self.trainop.Features.resize(1)
        self.trainop.Features.connect(self.extrOp.RegionFeatures)
        self.trainop.Labels.resize(1)
        self.trainop.Labels.setValues([labels])
        self.trainop.FixClassifier.setValue(False)
        self.trainop.ForestCount.setValue(1)
        assert self.trainop.Classifier.ready()
Esempio n. 27
0
    def testBasic_Npy(self):
        data = numpy.random.random((100, 100)).astype(numpy.float32)
        data = vigra.taggedView(data, vigra.defaultAxistags("xy"))

        graph = Graph()
        opPiper = OpArrayPiper(graph=graph)
        opPiper.Input.setValue(data)

        opExport = OpExportSlot(graph=graph)
        opExport.Input.connect(opPiper.Output)
        opExport.OutputFormat.setValue("numpy")
        opExport.OutputFilenameFormat.setValue(self._tmpdir + "/test_export_x{x_start}-{x_stop}_y{y_start}-{y_stop}")
        opExport.CoordinateOffset.setValue((10, 20))

        assert opExport.ExportPath.ready()
        assert os.path.split(opExport.ExportPath.value)[1] == "test_export_x10-110_y20-120.npy"
        # print "exporting data to: {}".format( opExport.ExportPath.value )
        opExport.run_export()

        opRead = OpInputDataReader(graph=graph)
        try:
            opRead.FilePath.setValue(opExport.ExportPath.value)
            expected_data = data.view(numpy.ndarray)
            read_data = opRead.Output[:].wait()
            assert (read_data == expected_data).all(), "Read data didn't match exported data!"
        finally:
            opRead.cleanUp()
Esempio n. 28
0
    def setUp(self):
        segimg = segImage()
        labels = {0: np.array([0, 1, 2]), 1: np.array([0, 0, 0, 0])}

        rawimg = np.indices(segimg.shape).sum(0).astype(np.float32)
        rawimg = rawimg.view(vigra.VigraArray)
        rawimg.axistags = vigra.defaultAxistags("txyzc")

        g = Graph()

        objectExtraction.config.selected_features = ["Count"]

        self.featsop = OpRegionFeatures(FEATURES, graph=g)
        self.featsop.LabelImage.setValue(segimg)
        self.featsop.RawImage.setValue(rawimg)
        assert self.featsop.Output.ready()

        self._opRegFeatsAdaptOutput = OpAdaptTimeListRoi(graph=g)
        self._opRegFeatsAdaptOutput.Input.connect(self.featsop.Output)
        assert self._opRegFeatsAdaptOutput.Output.ready()

        self.trainop = OpObjectTrain(graph=g)
        self.trainop.Features.resize(1)
        self.trainop.Features[0].connect(self._opRegFeatsAdaptOutput.Output)
        self.trainop.Labels.resize(1)
        self.trainop.Labels.setValues([labels])
        self.trainop.FixClassifier.setValue(False)
        self.trainop.ForestCount.setValue(1)
        assert self.trainop.Classifier.ready()

        self.op = OpObjectPredict(graph=g)
        self.op.Classifier.connect(self.trainop.Classifier)
        self.op.Features.connect(self._opRegFeatsAdaptOutput.Output)
        self.op.LabelsCount.setValue(2)
        assert self.op.Predictions.ready()
    def setup(self):
        graph = Graph()
        op = OpCompressedUserLabelArray(graph=graph)
        arrayshape = (1,100,100,10,1)
        op.inputs["shape"].setValue( arrayshape )
        blockshape = (1,10,10,10,1) # Why doesn't this work if blockshape is an ndarray?
        op.inputs["blockShape"].setValue( blockshape )
        op.eraser.setValue(100)

        dummyData = vigra.VigraArray(arrayshape, axistags=vigra.defaultAxistags('txyzc'))
        op.Input.setValue( dummyData )

        slicing = sl[0:1, 1:15, 2:36, 3:7, 0:1]
        inDataShape = slicing2shape(slicing)
        inputData = ( 3*numpy.random.random(inDataShape) ).astype(numpy.uint8)
        op.Input[slicing] = inputData
        
        data = numpy.zeros(arrayshape, dtype=numpy.uint8)
        data[slicing] = inputData

        # Sanity check...
        assert (op.Output[:].wait()[slicing] == data[slicing]).all()

        self.op = op
        self.slicing = slicing
        self.inData = inputData
        self.data = data
Esempio n. 30
0
 def test_basic(self):
     graph = lazyflow.graph.Graph()
     data = numpy.indices( (100,100), dtype=numpy.uint8 ).sum(0)
     data = vigra.taggedView( data, vigra.defaultAxistags('xy') )
     
     opDataProvider = OpArrayCache( graph=graph )
     opDataProvider.Input.setValue( data )
     
     op = OpZeroDefault( graph=graph )
     op.MetaInput.setValue( data )
 
     # Zero by default    
     output_data = op.Output[:].wait()
     assert (output_data == 0).all()
     
     # Connecting a real input triggers dirty notification
     dirty_notification_count = [0]
     def handleDirty(*args):
         dirty_notification_count[0] += 1
 
     op.Output.notifyDirty( handleDirty )
     op.Input.connect( opDataProvider.Output )
 
     assert dirty_notification_count[0] == 1
 
     # Output should provide real data if available    
     assert ( op.Output[:].wait() == data.view( numpy.ndarray ) ).all()
     
     # Output provides zeros again when the data is no longer available
     op.Input.disconnect()    
     output_data = op.Output[:].wait()
     assert (output_data == 0).all()
Esempio n. 31
0
    def testPatchDetection(self):
        vol = vigra.taggedView(np.ones((5,5), dtype=np.uint8)*128, axistags=vigra.defaultAxistags('xy'))
        vol[2:5,2:5] = 0
        expected = np.zeros((5,5))
        expected[3:5,3:5] = 1

        self.op.PatchSize.setValue(2)
        self.op.HaloSize.setValue(1)
        self.op.DetectionMethod.setValue('classic')
        self.op.InputVolume.setValue(vol)

        out = self.op.Output[:].wait()
        
        assert_array_equal(expected[3:5,3:5], out[3:5,3:5])
Esempio n. 32
0
        def handle_updated_axes():
            # The user is specifying a new interpretation of the file's axes
            updated_axisorder = str(settingsDlg.axesEdit.text())
            metadata = opMetadataInjector.Metadata.value.copy()
            metadata.axistags = vigra.defaultAxistags(updated_axisorder)
            opMetadataInjector.Metadata.setValue(metadata)

            if opReorderAxes._invalid_axes:
                settingsDlg.buttonBox.button(
                    QDialogButtonBox.Ok).setEnabled(False)
                # Red background
                settingsDlg.axesEdit.setStyleSheet(
                    "QLineEdit { background: rgb(255, 128, 128); selection-background-color: rgb(128, 128, 255); }"
                )
Esempio n. 33
0
    def testInvalidDtype(self):
        data = 255 * numpy.random.random((50, 100))
        data = data.astype(numpy.uint32)
        data = vigra.taggedView(data, vigra.defaultAxistags('xy'))

        graph = Graph()
        opExport = OpExportSlot(graph=graph)
        opExport.Input.setValue(data)
        opExport.OutputFilenameFormat.setValue(self._tmpdir + '/test_export')

        for fmt in ('jpg', 'png', 'pnm', 'bmp'):
            opExport.OutputFormat.setValue(fmt)
            msg = opExport.FormatSelectionErrorMsg.value
            assert msg, "{} supported although it is actually not".format(fmt)
Esempio n. 34
0
    def testMultiThread_masked(self):
        logger.info("Generating sample data...")
        sampleData = numpy.indices((3, 100, 200, 150, 2),
                                   dtype=numpy.float32).sum(0)
        sampleData = sampleData.view(numpy.ma.masked_array)
        sampleData.set_fill_value(numpy.float32(numpy.nan))
        sampleData[0] = numpy.ma.masked

        graph = Graph()
        opData = OpArrayPiper(graph=graph)
        opData.Input.meta.has_mask = True
        opData.Input.meta.axistags = vigra.defaultAxistags("txyzc")
        opData.Input.setValue(sampleData)

        op = OpCompressedCache(parent=None, graph=graph)
        # logger.debug("Setting block shape...")
        op.BlockShape.setValue([1, 100, 75, 50, 2])
        op.Input.connect(opData.Output)

        assert op.Output.ready()

        slicing = numpy.s_[0:2, 0:100, 50:150, 75:150, 0:1]
        expectedData = sampleData[slicing]

        results = {}

        def readData(resultIndex):
            results[resultIndex] = op.Output[slicing].wait()

        threads = []
        for i in range(10):
            threads.append(
                threading.Thread(target=functools.partial(readData, i)))

        for th in threads:
            th.start()

        for th in threads:
            th.join()

        assert len(results) == len(threads), "Didn't get all results."

        # logger.debug("Checking data...")
        for i, data in list(results.items()):
            assert ((data == expectedData).all()
                    and (data.mask == expectedData.mask).all()
                    and ((data.fill_value == expectedData.fill_value)
                         | (numpy.isnan(data.fill_value)
                            & numpy.isnan(expectedData.fill_value))).all()
                    ), "Incorrect output for index {}".format(i)
Esempio n. 35
0
    def deserializeFromHdf5(self, hdf5File, projectFilePath, headless=False):
        # Check the overall file version
        ilastikVersion = hdf5File["ilastikVersion"][()]

        # This is the v0.5 import deserializer.  Don't work with 0.6 projects (or anything else).
        if ilastikVersion != 0.5:
            return

        # The 'working directory' for the purpose of constructing absolute
        #  paths from relative paths is the project file's directory.
        projectDir = os.path.split(projectFilePath)[0]
        self.topLevelOperator.WorkingDirectory.setValue(projectDir)

        # Access the top group and the info group
        try:
            # dataset = hdf5File["DataSets"]["dataItem00"]["data"]
            dataDir = hdf5File["DataSets"]
        except KeyError:
            # If our group (or subgroup) doesn't exist, then make sure the operator is empty
            self.topLevelOperator.DatasetGroup.resize(0)
            return

        self.topLevelOperator.DatasetGroup.resize(len(dataDir))
        for index, (datasetDirName,
                    datasetDir) in enumerate(sorted(dataDir.items())):
            # Some older versions of ilastik 0.5 stored the data in tzyxc order.
            # Some power-users can enable a command-line flag that tells us to
            #  transpose the data back to txyzc order when we import the old project.
            default_axis_order = ilastik.utility.globals.ImportOptions.default_axis_order
            if default_axis_order is not None:
                import warnings

                # todo:axisorder: this will apply for other old ilastik projects as well... adapt the formulation.
                warnings.warn(
                    "Using a strange axis order to import ilastik 0.5 projects: {}"
                    .format(default_axis_order))
                datasetInfo.axistags = vigra.defaultAxistags(
                    default_axis_order)

            # We'll set up the link to the dataset in the old project file,
            #  but we'll set the location to ProjectInternal so that it will
            #  be copied to the new file when the project is saved.
            datasetInfo = ProjectInternalDatasetInfo(
                inner_path=str(projectFilePath + "/DataSets/" +
                               datasetDirName + "/data"),
                nickname=f"{datasetDirName} (imported from v0.5)",
            )

            # Give the new info to the operator
            self.topLevelOperator.DatasetGroup[index][0].setValue(datasetInfo)
Esempio n. 36
0
    def _get_template_dataset_infos(self, input_axes=None):
        """
        Sometimes the default settings for an input file are not suitable (e.g. the axistags need to be changed).
        We assume the LAST non-batch input in the workflow has settings that will work for all batch processing inputs.
        Here, we get the DatasetInfo objects from that lane and store them as 'templates' to modify for all batch-processing files.
        """
        template_infos = {}

        # If there isn't an available dataset to use as a template
        if len(self.dataSelectionApplet.topLevelOperator.DatasetGroup) == 0:
            num_roles = len(
                self.dataSelectionApplet.topLevelOperator.DatasetRoles.value)
            for role_index in range(num_roles):
                template_infos[role_index] = DatasetInfo()
                if input_axes:
                    template_infos[
                        role_index].axistags = vigra.defaultAxistags(
                            input_axes)
            return template_infos

        # Use the LAST non-batch input file as our 'template' for DatasetInfo settings (e.g. axistags)
        template_lane = len(
            self.dataSelectionApplet.topLevelOperator.DatasetGroup) - 1
        opDataSelectionTemplateView = self.dataSelectionApplet.topLevelOperator.getLane(
            template_lane)

        for role_index, info_slot in enumerate(
                opDataSelectionTemplateView.DatasetGroup):
            if info_slot.ready():
                template_infos[role_index] = info_slot.value
            else:
                template_infos[role_index] = DatasetInfo()
            if input_axes:
                # Support the --input_axes arg to override input axis order, same as DataSelection applet.
                template_infos[role_index].axistags = vigra.defaultAxistags(
                    input_axes)
        return template_infos
Esempio n. 37
0
    def testIntegerRange(self):
        """
        test if the output is in the right integer range
        in particular, too large values should be set to max and too small
        values to min
        """
        v = np.zeros((1, 1, 5), dtype=np.uint8)
        v[0, 0, :] = [220, 255, 0, 255, 220]
        v = vigra.VigraArray(v, axistags=vigra.defaultAxistags("xyz"), dtype=np.uint8)
        m = vigra.VigraArray(v, axistags=vigra.defaultAxistags("xyz"), dtype=np.uint8)
        m[:] = 0
        m[0, 0, 2] = 1

        for interpolationMethod in ["cubic"]:
            self.op.InputVolume.setValue(v)
            self.op.Missing.setValue(m)
            self.op.InterpolationMethod.setValue(interpolationMethod)
            self.op.InputVolume.setValue(v)
            out = self.op.Output[:].wait().view(np.ndarray)
            # natural comparison
            self.assertEqual(out[0, 0, 2], 255)

        v = np.zeros((1, 1, 5), dtype=np.uint8)
        v[0, 0, :] = [220, 255, 0, 255, 220]
        v = 255 - vigra.VigraArray(v, axistags=vigra.defaultAxistags("xyz"), dtype=np.uint8)
        m = vigra.VigraArray(v, axistags=vigra.defaultAxistags("xyz"), dtype=np.uint8)
        m[:] = 0
        m[0, 0, 2] = 1

        for interpolationMethod in ["cubic"]:
            self.op.InputVolume.setValue(v)
            self.op.Missing.setValue(m)
            self.op.InterpolationMethod.setValue(interpolationMethod)
            self.op.InputVolume.setValue(v)
            out = self.op.Output[:].wait().view(np.ndarray)
            # natural comparison
            self.assertEqual(out[0, 0, 2], 0)
def export_from_tiled_volume(tiles_description_json_path, roi,
                             output_hdf5_path, output_dataset_name):
    """
    Export a cutout volume from a TiledVolume into an hdf5 dataset.

    Args:
        tiles_description_json_path: path to the TiledVolume's json description file.
        roi: The (start, stop) corners of the cutout region to export. (Must be tuple-of-tuples.)
        output_hdf5_path: The HDF5 file to export to.
        output_dataset_name: The name of the HDF5 dataset to write.  Will be deleted first if necessary.
    """
    if not os.path.exists(tiles_description_json_path):
        raise Exception("Description file does not exist: " +
                        tiles_description_json_path)

    start, stop = numpy.array(roi)
    shape = tuple(stop - start)

    tiled_volume = TiledVolume(tiles_description_json_path)

    with Timer() as timer:
        result_array = numpy.ndarray(shape, tiled_volume.description.dtype)

        logger.info("Reading cutout volume of shape: {}".format(shape))
        tiled_volume.read((start, stop), result_out=result_array)

        logger.info("Writing data to: {}/{}".format(output_hdf5_path,
                                                    output_dataset_name))
        with h5py.File(output_hdf5_path, 'a') as output_h5_file:
            if output_dataset_name in output_h5_file:
                del output_h5_file[output_dataset_name]
            dset = output_h5_file.create_dataset(output_dataset_name,
                                                 shape,
                                                 result_array.dtype,
                                                 chunks=True,
                                                 data=result_array)
            try:
                import vigra
            except ImportError:
                pass
            else:
                # Attach axistags to the exported dataset, so ilastik
                #  automatically interprets the volume correctly.
                output_axes = tiled_volume.description.output_axes
                dset.attrs['axistags'] = vigra.defaultAxistags(
                    output_axes).toJSON()

        logger.info("Exported {:.1e} pixels in {:.1f} seconds.".format(
            numpy.prod(shape), timer.seconds()))
Esempio n. 39
0
    def setupOutputs(self):
        """
        Load the file specified via our input slot and present its data on the output slot.
        """
        if self._memmapFile is not None:
            self._memmapFile.close()
        fileName = self.FileName.value

        try:
            # Load the file in read-only "memmap" mode to avoid reading it from disk all at once.
            rawLoadedNumpyObject = numpy.load(str(fileName),
                                              mmap_mode="r",
                                              allow_pickle=False)
        except (ValueError, IOError):
            raise OpNpyFileReader.DatasetReadError(
                "Unable to open numpy dataset: {}".format(fileName))

        # .npy files:
        if isinstance(rawLoadedNumpyObject, numpy.ndarray):
            rawNumpyArray = rawLoadedNumpyObject
            self._memmapFile = rawNumpyArray._mmap
        # .npz files:
        elif isinstance(rawLoadedNumpyObject, numpy.lib.npyio.NpzFile):
            if self.InternalPath.ready():
                try:
                    rawNumpyArray = rawLoadedNumpyObject[
                        self.InternalPath.value]
                except KeyError:
                    raise OpNpyFileReader.DatasetReadError(
                        "InternalPath not found in file. Unable to open numpy npz dataset: "
                        "{fileName}: {internalPath}".format(
                            fileName=fileName,
                            internalPath=self.InternalPath.value))
            else:
                raise OpNpyFileReader.DatasetReadError(
                    "InternalPath not given. Unable to open numpy npz dataset: {fileName}"
                    .format(fileName=fileName))

        shape = rawNumpyArray.shape

        axisorder = get_default_axisordering(shape)

        # Cast to vigra array
        self._rawVigraArray = rawNumpyArray.view(vigra.VigraArray)
        self._rawVigraArray.axistags = vigra.defaultAxistags(axisorder)

        self.Output.meta.dtype = self._rawVigraArray.dtype.type
        self.Output.meta.axistags = copy.copy(self._rawVigraArray.axistags)
        self.Output.meta.shape = self._rawVigraArray.shape
Esempio n. 40
0
        def test_Roi_default_order(self):
            for i in range(self.tests):
                self.prepareVolnOp()
                shape = self.operator.outputs["output"].meta.shape
                roi = [None, None]
                roi[1] = [
                    numpy.random.randint(2, s) if s != 1 else 1 for s in shape
                ]
                roi[0] = [
                    numpy.random.randint(0, roi[1][i]) if s != 1 else 0
                    for i, s in enumerate(shape)
                ]
                roi[0] = TinyVector(roi[0])
                roi[1] = TinyVector(roi[1])
                result = self.operator.outputs["output"](roi[0], roi[1]).wait()
                logger.debug(
                    '------------------------------------------------------')
                logger.debug("self.array.shape = " + str(self.array.shape))
                logger.debug("type(input) == " +
                             str(type(self.operator.input.value)))
                logger.debug("input.shape == " +
                             str(self.operator.input.meta.shape))
                logger.debug("Input Tags:")
                logger.debug(str(self.operator.inputs['input'].meta.axistags))
                logger.debug("Output Tags:")
                logger.debug(str(self.operator.output.meta.axistags))
                logger.debug("roi= " + str(roi))
                logger.debug("type(result) == " + str(type(result)))
                logger.debug("result.shape == " + str(result.shape))
                logger.debug(
                    '------------------------------------------------------')

                # Check the shape
                assert len(result.shape) == 5

                # Ensure the result came out in volumina order
                assert self.operator.outputs[
                    "output"].meta.axistags == vigra.defaultAxistags('txyzc')

                # Check the data
                vresult = result.view(vigra.VigraArray)
                vresult.axistags = self.operator.outputs[
                    "output"].meta.axistags
                reorderedInput = self.inArray.withAxes(*[
                    tag.key
                    for tag in self.operator.outputs["output"].meta.axistags
                ])
                assert numpy.all(
                    vresult == reorderedInput[roiToSlice(roi[0], roi[1])])
Esempio n. 41
0
    def testBasic_Dvid(self):
        if _skip_dvid:
            raise nose.SkipTest

        # Spin up a mock dvid server to test with.
        dvid_dataset, data_uuid, data_name = "datasetA", "abcde", "indices_data"
        mockserver_data_file = self._tmpdir + '/mockserver_data.h5'
        with H5MockServerDataFile(mockserver_data_file) as test_h5file:
            test_h5file.add_node(dvid_dataset, data_uuid)
        server_proc, shutdown_event = H5MockServer.create_and_start(
            mockserver_data_file,
            "localhost",
            8000,
            same_process=False,
            disable_server_logging=True)

        try:
            data = 255 * numpy.random.random((100, 100, 4))
            data = data.astype(numpy.uint8)
            data = vigra.taggedView(data, vigra.defaultAxistags('xyc'))

            graph = Graph()

            opPiper = OpArrayPiper(graph=graph)
            opPiper.Input.setValue(data)

            opExport = OpExportSlot(graph=graph)
            opExport.Input.connect(opPiper.Output)
            opExport.OutputFormat.setValue('dvid')
            url = 'http://localhost:8000/api/node/{data_uuid}/{data_name}'.format(
                **locals())
            opExport.OutputFilenameFormat.setValue(url)

            assert opExport.ExportPath.ready()
            assert opExport.ExportPath.value == url
            opExport.run_export()

            try:
                opRead = OpInputDataReader(graph=graph)
                opRead.FilePath.setValue(opExport.ExportPath.value)
                expected_data = data.view(numpy.ndarray)
                read_data = opRead.Output[:].wait()
                assert (read_data == expected_data
                        ).all(), "Read data didn't match exported data!"
            finally:
                opRead.cleanUp()
        finally:
            shutdown_event.set()
            server_proc.join()
Esempio n. 42
0
    def setUp(self):
        segimg = segImage()
        binimg = (segimg > 0).astype(np.uint8)
        labels = {0: np.array([0, 1, 2]), 1: np.array([0, 1, 1, 2])}

        rawimg = np.indices(segimg.shape).sum(0).astype(np.float32)
        rawimg = rawimg.view(vigra.VigraArray)
        rawimg.axistags = vigra.defaultAxistags('txyzc')

        g = Graph()

        features = {"Standard Object Features": {"Count":{}, "RegionCenter":{}, "Coord<Principal<Kurtosis>>":{}, \
                                       "Coord<Maximum>":{}, "Mean":{}, \
                                      "Mean in neighborhood":{"margin":(30, 30, 1)}}}

        sel_features = {
            "Standard Object Features": {
                "Count": {},
                "Mean": {},
                "Mean in neighborhood": {
                    "margin": (30, 30, 1)
                },
                "Variance": {}
            }
        }

        self.extrOp = OpObjectExtraction(graph=g)
        self.extrOp.BinaryImage.setValue(binimg)
        self.extrOp.RawImage.setValue(rawimg)
        self.extrOp.Features.setValue(features)

        assert self.extrOp.RegionFeatures.ready()
        feats = self.extrOp.RegionFeatures([0, 1]).wait()

        assert len(feats) == rawimg.shape[0]
        for key in features["Standard Object Features"]:
            assert key in feats[0]["Standard Object Features"].keys()

        self.trainop = OpObjectTrain(graph=g)
        self.trainop.Features.resize(1)
        self.trainop.Features.connect(self.extrOp.RegionFeatures)
        self.trainop.SelectedFeatures.setValue(sel_features)
        self.trainop.LabelsCount.setValue(2)
        self.trainop.Labels.resize(1)
        self.trainop.Labels.setValues([labels])
        self.trainop.FixClassifier.setValue(False)
        self.trainop.ForestCount.setValue(1)

        assert self.trainop.Classifier.ready()
Esempio n. 43
0
    def test_Roi_default_order(self):
        for i in range(self.tests):
            self.prepareVolnOp()
            shape = self.operator.Output.meta.shape
            roi = [None, None]
            roi[1] = [
                numpy.random.randint(2, s) if s != 1 else 1 for s in shape
            ]
            roi[0] = [
                numpy.random.randint(0, roi[1][i]) if s != 1 else 0
                for i, s in enumerate(shape)
            ]
            roi[0] = TinyVector(roi[0])
            roi[1] = TinyVector(roi[1])
            result = self.operator.Output(roi[0], roi[1]).wait()
            logger.debug(
                "------------------------------------------------------")
            logger.debug("self.array.shape = " + str(self.array.shape))
            logger.debug("type(input) == " +
                         str(type(self.operator.Input.value)))
            logger.debug("input.shape == " +
                         str(self.operator.Input.meta.shape))
            logger.debug("Input Tags:")
            logger.debug(str(self.operator.Input.meta.axistags))
            logger.debug("Output Tags:")
            logger.debug(str(self.operator.Output.meta.axistags))
            logger.debug("roi= " + str(roi))
            logger.debug("type(result) == " + str(type(result)))
            logger.debug("result.shape == " + str(result.shape))
            logger.debug(
                "------------------------------------------------------")

            # Check the shape
            assert len(result.shape) == 5
            assert not isinstance(
                result, vigra.VigraArray
            ), "For compatibility with generic code, output should be provided as a plain numpy array."

            # Ensure the result came out in volumina order
            assert self.operator.Output.meta.axistags == vigra.defaultAxistags(
                "tzyxc")

            # Check the data
            vresult = result.view(vigra.VigraArray)
            vresult.axistags = self.operator.Output.meta.axistags
            reorderedInput = self.inArray.withAxes(
                *[tag.key for tag in self.operator.Output.meta.axistags])
            assert numpy.all(
                vresult == reorderedInput[roiToSlice(roi[0], roi[1])])
Esempio n. 44
0
    def setupOutputs(self):
        """
        Load the file specified via our input slot and present its data on the output slot.
        """
        fileName = self.FileName.value

        self.mmf = MmfParser.MmfParser(str(fileName))
        frameNum = self.mmf.getNumberOfFrames()
        
        self.frame = self.mmf.getFrame(0)

        self.Output.meta.dtype = self.frame.dtype.type
        self.Output.meta.axistags = vigra.defaultAxistags(AXIS_ORDER)
        self.Output.meta.shape = (frameNum, self.frame.shape[0], self.frame.shape[1], 1)
        self.Output.meta.ideal_blockshape = (1,) + self.Output.meta.shape[1:]
Esempio n. 45
0
        def prepareVolnOp(self):
            tags = random.sample(self.axis, random.randint(2, len(self.axis)))
            tagStr = ''
            for s in tags:
                tagStr += s
            axisTags = vigra.defaultAxistags(tagStr)

            self.shape = []
            for tag in axisTags:
                self.shape.append(random.randint(20, 30))

            self.array = (numpy.random.rand(*tuple(self.shape)) * 255)
            self.array = (float(250) / 255 * self.array + 5).astype(int)
            self.inArray = vigra.VigraArray(self.array, axistags=axisTags)
            self.operator.inputs["input"].setValue(self.inArray)
Esempio n. 46
0
    def runConvexHull(self, segimg, feats):
        # testing 2D Convex Hull features on a 2D image

        rawimg = np.indices(segimg.shape).sum(0).astype(np.float32)
        rawimg = rawimg.view(vigra.VigraArray)
        rawimg.axistags = vigra.defaultAxistags("txyzc")

        g = Graph()
        self.featsop = OpRegionFeatures(graph=g)
        self.featsop.LabelVolume.setValue(segimg)
        self.featsop.RawVolume.setValue(rawimg)
        self.featsop.Features.setValue(feats)
        output = self.featsop.Output([]).wait()

        return output
Esempio n. 47
0
    def setup_method(self, method):
        self.data2d = numpy.zeros((3, 3, 3))
        self.data2d[:, :, 0] = 1
        self.data2d[:, :, 1] = 2
        self.data2d[:, :, 2] = 3

        self.data2d = self.data2d.view(vigra.VigraArray)
        self.data2d.axistags = vigra.defaultAxistags("xyc")

        self.data3d = numpy.zeros((3, 3, 3, 3))
        self.data3d[:, :, :, 0] = 1
        self.data3d[:, :, :, 1] = 2
        self.data3d[:, :, :, 2] = 3

        self.data3d = self.data3d.view(vigra.VigraArray)
        self.data3d.axistags = vigra.defaultAxistags("xyzc")

        self.data_bad_channel = numpy.zeros((3, 3, 3, 3))
        self.data_bad_channel[:, :, 0, :] = 1
        self.data_bad_channel[:, :, 1, :] = 2
        self.data_bad_channel[:, :, 2, :] = 3

        self.data_bad_channel = self.data_bad_channel.view(vigra.VigraArray)
        self.data_bad_channel.axistags = vigra.defaultAxistags("xycz")
Esempio n. 48
0
    def put(self, slicing, array):
        assert _has_vigra, "Lazyflow SinkSource requires lazyflow and vigra."

        taggedArray = array.view(vigra.VigraArray)
        taggedArray.axistags = vigra.defaultAxistags("txyzc")

        inputTags = self._inputSlot.meta.axistags
        inputKeys = [tag.key for tag in inputTags]
        transposedArray = taggedArray.withAxes(*inputKeys)
        taggedSlicing = dict(list(zip("txyzc", slicing)))
        transposedSlicing = ()
        for k in inputKeys:
            if k in "txyzc":
                transposedSlicing += (taggedSlicing[k],)
        self._inputSlot[transposedSlicing] = transposedArray.view(np.ndarray)
Esempio n. 49
0
def get_result_operator(input_data):
    """
    Returns the result of the wrapping operator pipeline, which gets
    accessed via the GUI.
    """

    input_data = vigra.VigraArray(input_data, axistags=vigra.defaultAxistags(AXIS_TAGS))

    graph = Graph()
    with Pipeline(graph=graph) as get_wsdt:
        get_wsdt.add(OpArrayPiper, Input=input_data)
        get_wsdt.add(OpCachedWsdt, FreezeCache=False)
        wsdt_result = get_wsdt[-1].outputs["Superpixels"][:].wait()

    return wsdt_result
Esempio n. 50
0
    def setupOutputs(self):
        # Create a RESTfulVolume object to read the description file and do the downloads.
        self._volumeObject = RESTfulVolume(self.DescriptionFilePath.value)

        self._axes = self._volumeObject.description.axes
        outputShape = tuple(self._volumeObject.description.shape)

        # If the dataset has no channel axis, add one.
        if 'c' not in self._axes:
            outputShape += (1, )
            self._axes += 'c'

        self.Output.meta.shape = outputShape
        self.Output.meta.dtype = self._volumeObject.description.dtype
        self.Output.meta.axistags = vigra.defaultAxistags(self._axes)
Esempio n. 51
0
    def test_OpStreamingUfmfReader(self):
        # Tests the ufmf reader operator, opening a small video that is created on setUp.
        self.graph = Graph()
        ufmfReader = OpStreamingUfmfReader(graph=self.graph)
        ufmfReader.FileName.setValue(self.testUfmfFileName)
        output = ufmfReader.Output[:].wait()

        # Verify shape, data type, and axis tags
        assert output.shape == EXPECTED_SHAPE
        assert ufmfReader.Output.meta.dtype == EXPECTED_DTYPE
        assert ufmfReader.Output.meta.axistags == vigra.defaultAxistags(
            EXPECTED_AXIS_ORDER)

        # Clean reader
        ufmfReader.cleanUp()
Esempio n. 52
0
def _volume(nx=64, ny=64, nz=100, method="linear"):
    b = vigra.VigraArray(np.ones((nx, ny, nz)), axistags=vigra.defaultAxistags("xyz"))
    if method == "linear":
        for i in range(b.shape[2]):
            b[:, :, i] *= (i + 1) + 50
    elif method == "cubic":
        s = nz // 3
        for z in range(b.shape[2]):
            b[:, :, z] = (z - s) ** 2 * z * 150.0 / (nz * (nz - s) ** 2) + 30
    elif method == "constant":
        b[:] = 124
    else:
        raise NotImplementedError("unknown method '{}'.".format(method))

    return b
Esempio n. 53
0
def binaryImage():
    frameNum = 500

    img = np.zeros((frameNum, 100, 100, 1), dtype=np.float32)

    for frame in range(frameNum):
        img[frame, 0:10, 0:10, 0] = 1
        img[frame, 20:30, 20:30, 0] = 1
        img[frame, 40:45, 40:45, 0] = 1
        img[frame, 60:80, 60:80, 0] = 1

    img = img.view(vigra.VigraArray)
    img.axistags = vigra.defaultAxistags('txyc')

    return img
Esempio n. 54
0
    def setUp(self):
        self.graph = lazyflow.graph.Graph()
        self._tmpdir = tempfile.mkdtemp()
        self._name_pattern = 'test_stack_slice_{slice_index}.tiff'
        self._stack_filepattern = os.path.join(self._tmpdir,
                                               self._name_pattern)

        # Generate some test data
        self.dataShape = (5, 10, 64, 128, 2)
        self._axisorder = 'tzyxc'
        self.testData = vigra.VigraArray(self.dataShape,
                                         axistags=vigra.defaultAxistags(
                                             self._axisorder),
                                         order='C').astype(numpy.uint8)
        self.testData[...] = numpy.indices(self.dataShape).sum(0)
Esempio n. 55
0
def analyze(image_id, model):
    args = app.parse_args([])
    args.headless = True
    args.project = model
    args.readonly = True
    shell = app.main(args)
    input_data = load_from_s3(image_id)
    # run ilastik headless
    data = [{
        "Raw Data":
        PreloadedArrayDatasetInfo(preloaded_array=input_data,
                                  axistags=vigra.defaultAxistags("tzyxc"))
    }]  # noqa
    return shell.workflow.batchProcessingApplet.run_export(
        data, export_to_array=True)  # noqa
Esempio n. 56
0
    def configure_operator_with_parsed_args(self, parsed_args):
        """
        Helper function for headless workflows.
        Configures this applet's top-level operator according to the settings provided in ``parsed_args``.

        :param parsed_args: Must be an ``argparse.Namespace`` as returned by :py:meth:`parse_known_cmdline_args()`.
        """
        role_names = self.topLevelOperator.DatasetRoles.value
        role_paths = self.role_paths_from_parsed_args(parsed_args)

        for role_index, input_paths in list(role_paths.items()):
            # If the user doesn't want image stacks to be copied into the project file,
            #  we generate hdf5 volumes in a temporary directory and use those files instead.
            if parsed_args.preconvert_stacks:
                import tempfile

                input_paths = self.convertStacksToH5(input_paths, tempfile.gettempdir())

            input_infos = [FilesystemDatasetInfo(filepath=p) if p else None for p in input_paths]
            if parsed_args.input_axes:
                for info in [_f for _f in input_infos if _f]:
                    info.axistags = vigra.defaultAxistags(parsed_args.input_axes)

            opDataSelection = self.topLevelOperator
            existing_lanes = len(opDataSelection.DatasetGroup)
            opDataSelection.DatasetGroup.resize(max(len(input_infos), existing_lanes))
            for lane_index, info in enumerate(input_infos):
                if info:
                    opDataSelection.DatasetGroup[lane_index][role_index].setValue(info)

            need_warning = False
            for lane_index in range(len(input_infos)):
                output_slot = opDataSelection.ImageGroup[lane_index][role_index]
                if output_slot.ready() and output_slot.meta.prefer_2d and "z" in output_slot.meta.axistags:
                    need_warning = True
                    break

            if need_warning:
                logger.warning(
                    "*******************************************************************************************"
                )
                logger.warning(
                    "Some of your input data is stored in a format that is not efficient for 3D access patterns."
                )
                logger.warning("Performance may suffer as a result.  For best performance, use a chunked HDF5 volume.")
                logger.warning(
                    "*******************************************************************************************"
                )
Esempio n. 57
0
    def setupOutputs(self):
        # Read the dataset meta-info from the HDF5 dataset
        self._h5N5File = self.H5N5File.value
        internalPath = self.InternalPath.value

        if internalPath not in self._h5N5File:
            raise OpStreamingH5N5Reader.DatasetReadError(internalPath)

        dataset = self._h5N5File[internalPath]

        try:
            # Read the axistags property without actually importing the data
            # Throws KeyError if 'axistags' can't be found
            axistagsJson = self._h5N5File[internalPath].attrs["axistags"]
            axistags = vigra.AxisTags.fromJSON(axistagsJson)
            axisorder = "".join(tag.key for tag in axistags)
            if "?" in axisorder:
                raise KeyError("?")
        except KeyError:
            # No axistags found.
            axisorder = get_default_axisordering(dataset.shape)
            axistags = vigra.defaultAxistags(str(axisorder))

        assert len(axistags) == len(dataset.shape), f"Mismatch between shape {dataset.shape} and axisorder {axisorder}"

        # Configure our slot meta-info
        self.OutputImage.meta.dtype = dataset.dtype.type
        self.OutputImage.meta.shape = dataset.shape
        self.OutputImage.meta.axistags = axistags

        # If the dataset specifies a datarange, add it to the slot metadata
        if "drange" in self._h5N5File[internalPath].attrs:
            self.OutputImage.meta.drange = tuple(self._h5N5File[internalPath].attrs["drange"])

        # Same for display_mode
        if "display_mode" in self._h5N5File[internalPath].attrs:
            self.OutputImage.meta.display_mode = str(self._h5N5File[internalPath].attrs["display_mode"])

        total_volume = numpy.prod(numpy.array(self._h5N5File[internalPath].shape))
        chunks = self._h5N5File[internalPath].chunks
        if not chunks and total_volume > 1e8:
            self.OutputImage.meta.inefficient_format = True
            logger.warning(
                f"This dataset ({self._h5N5File.filename}{internalPath}) is NOT chunked. "
                f"Performance for 3D access patterns will be bad!"
            )
        if chunks:
            self.OutputImage.meta.ideal_blockshape = chunks
Esempio n. 58
0
 def __init__(
     self,
     *,
     laneShape: Tuple,
     laneDtype: type,
     default_tags: AxisTags,
     allowLabels: bool = True,
     subvolume_roi: Tuple = None,
     axistags: AxisTags = None,
     display_mode: str = "default",
     nickname: str = "",
     normalizeDisplay: bool = None,
     drange: Tuple[Number, Number] = None,
     guess_tags_for_singleton_axes: bool = False,
 ):
     self.laneShape = laneShape
     self.laneDtype = laneDtype
     if isinstance(self.laneDtype, numpy.dtype):
         self.laneDtype = numpy.typeDict[self.laneDtype.name]
     self.allowLabels = allowLabels
     self.subvolume_roi = subvolume_roi
     self.axistags = axistags
     self.drange = drange
     self.display_mode = display_mode  # choices: default, grayscale, rgba, random-colortable, binary-mask.
     self.nickname = nickname
     self.normalizeDisplay = (self.drange is not None) if normalizeDisplay is None else normalizeDisplay
     self.axistags = axistags or default_tags
     if len(self.axistags) != len(self.laneShape):
         if not guess_tags_for_singleton_axes:
             raise UnsuitedAxistagsException(self.axistags, self.laneShape)
         default_keys = [tag.key for tag in default_tags]
         tagged_shape = dict(zip(default_keys, self.laneShape))
         squeezed_shape = {k: v for k, v in tagged_shape.items() if v != 1}
         requested_keys = [tag.key for tag in axistags]
         if set(requested_keys).issubset(set(default_keys)) and set(default_keys) - set(requested_keys) == set("c"):
             self.axistags = default_tags  # allow missing 'c' in axistags; not sure if this is a good idea
         elif len(requested_keys) == len(squeezed_shape):
             dummy_axes = [key for key in "ctzxy" if key not in requested_keys]
             out_axes = ""
             for k, v in tagged_shape.items():
                 if v > 1:
                     out_axes += requested_keys.pop(0)
                 else:
                     out_axes += dummy_axes.pop(0)
             self.axistags = vigra.defaultAxistags(out_axes)
         else:
             raise UnsuitedAxistagsException(requested_keys, self.laneShape)
     self.legacy_datasetId = self.generate_id()
Esempio n. 59
0
def reorder_axes(input_arr: numpy.ndarray, *, from_axes_tags: str,
                 to_axes_tags: str):
    if isinstance(from_axes_tags, AxisTags):
        from_axes_tags = "".join(from_axes_tags.keys())

    if isinstance(to_axes_tags, AxisTags):
        to_axes_tags = "".join(to_axes_tags.keys())

    op = OpReorderAxes(graph=Graph())

    tagged_arr = vigra.VigraArray(
        input_arr, axistags=vigra.defaultAxistags(from_axes_tags))
    op.Input.setValue(tagged_arr)
    op.AxisOrder.setValue(to_axes_tags)

    return op.Output([]).wait()
Esempio n. 60
0
    def setUp(self):
        self.dataShape = (1, 100, 100, 10, 1)
        self.data = (numpy.random.random(self.dataShape) * 100).astype(int)
        self.data = self.data.view(vigra.VigraArray)
        self.data.axistags = vigra.defaultAxistags('txyzc')

        graph = Graph()
        opProvider = OpArrayPiperWithAccessCount(graph=graph)
        opProvider.Input.setValue(self.data)
        self.opProvider = opProvider

        opCache = OpArrayCache(graph=graph)
        opCache.Input.connect(opProvider.Output)
        opCache.blockShape.setValue((10, 10, 10, 10, 10))
        opCache.fixAtCurrent.setValue(False)
        self.opCache = opCache